Hydrological Functioning of Surface-Mined Watersheds in Western Maryland: Restoration or Reclamation?

Keith N. Eshleman and Brian C. McCormick

Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD

Geomorphic Reclamation and Natural Stream Design Forum: Bristol, VA; April 2009
Research Questions

• What changes in the hydrologic balance of mined lands can be attributed to surface mining?
• Are normal hydrologic functions typically restored by current reclamation practices?
• How well does the SCS-CN method accurately predict storm runoff responses of mined/reclaimed watersheds?
• Is the SCS-CN method biased in any way?
• How might we improve land reclamation in a way that reduces disturbances to the hydrologic balance both on-site and to the larger basins within which the mining has occurred?
Flooding on the Central Appalachian Plateau (CAP): interaction among precipitation, topography, and land use change
Savage River (127 km²)
Georges Creek (187 km²)
ROCA Watersheds (TNEF, TMAT)
Georges Creek
69% Forested
17% Mined/Reclaimed
8% Agriculture
7% Developed

Savage River
82% Forested
15% Agriculture
3% Developed
TNEF (Tributary to Neff Run)

TMAT (Tributary to Mathews Run)
Results: ROCA Watersheds1,2

- Similar annual and long-term water balances
- No significant difference in timing of stormflow
- Similar unitgraphs
- Higher peak runoff and total storm runoff due to mining/reclamation (on average by a factor of 2-3)
 - Reduced soil infiltration capacity due to loss of forest floor and topsoil; soil compaction
 - Overland flow vs. subsurface stormflow
- Observed differences are conservative

1Negley and Eshleman (\textit{Hydrological Processes}, 2006)
2Simmons \textit{et al.} (\textit{Ecological Applications}, 2008)
TSSR (Tributary to Seldom Seen Run)
TSNR (Tributary to Squirrel Neck Run)
Watershed Characteristics

<table>
<thead>
<tr>
<th>Site</th>
<th>Area (ha)</th>
<th>Map HSG</th>
<th>Mined Area</th>
<th>Year reclaimed(^1)</th>
<th>Elevation (m MSL)</th>
<th>Flume Installed</th>
<th>Flume Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary Matthew Run (TMAT)</td>
<td>27.1</td>
<td>C</td>
<td>47%</td>
<td>~1982</td>
<td>830m</td>
<td>10/1999</td>
<td>10/2008</td>
</tr>
<tr>
<td>Tributary East Branch Neff Run (TNEF)</td>
<td>3.0</td>
<td>C</td>
<td>0%</td>
<td>-</td>
<td>720m</td>
<td>10/1999</td>
<td>Active</td>
</tr>
<tr>
<td>Tributary Squirrel Neck Run (TSNR)</td>
<td>11.1</td>
<td>B/C</td>
<td>100%</td>
<td>~1982</td>
<td>580m</td>
<td>1/2005</td>
<td>Active</td>
</tr>
<tr>
<td>Tributary Seldom Seen Run (TSSR)</td>
<td>5.1</td>
<td>C</td>
<td>100%</td>
<td>~2002(^2)</td>
<td>630m</td>
<td>9/2004</td>
<td>Active</td>
</tr>
</tbody>
</table>

1) All mined areas reclaimed by regrading to approximate original contour and replanting with grasses per PL95-87

2) Reclamation in this watershed has continued with the planting of some woody vegetation (black locust trees), regrading including filling of rills and gullies, and liming and reseeding.
Small Watersheds: Runoff Results

TSSR > TMAT > TNEF ≈ TSNR

<table>
<thead>
<tr>
<th>Watershed</th>
<th>Events</th>
<th>Date</th>
<th>Rainfall (mm)</th>
<th>Runoff (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMAT</td>
<td>64</td>
<td>6/2000-9/2008</td>
<td>18-170</td>
<td>0-93</td>
</tr>
<tr>
<td>TSNR</td>
<td>29</td>
<td>1/2005-9/2008</td>
<td>18-90</td>
<td>0-11</td>
</tr>
</tbody>
</table>
HYDROLOGY: SOLUTION OF RUNOFF EQUATION

\[Q = \frac{(P - 0.2S)^2}{P + 0.85S} \]

- \(P \geq 0 \) to 12 inches
- \(Q \geq 0 \) to 6 inches

Curves on this sheet are for the case \(I_a + 0.2S \), so that:

\[Q = \frac{(P - 0.2S)^2}{P + 0.85S} \]

PREDICTED RUNOFF (Q) IN INCHES

REFERENCE:
Mockus, Victor; Estimating direct runoff amounts from storm rainfall:
Central Technical Unit, October 1955

MINE LAND RUNOFF FROM SCS METHOD
MINELAND RUNOFF FROM SCS METHOD

MINELAND RUNOFF FROM SCS METHOD

Hydrology: Solution of Runoff Equation

Runoff = 2.3"

CN = 76

Rainfall = 4.67"
(25 yr/24 hr storm)
TR-55 Tabulated Value

Observed Value

TMAT (reclaimed)
Estimated and Observed CNs for Reclaimed Watersheds

<table>
<thead>
<tr>
<th>Source</th>
<th>Location</th>
<th>Watershed</th>
<th>TR-55/NEH-4*</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ritter and Gardner (1991)</td>
<td>Central PA</td>
<td>Browncrest</td>
<td>74</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moshannon</td>
<td>75</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Snow Shoe</td>
<td>77</td>
<td>88</td>
</tr>
<tr>
<td>Bonta et al. (1997)</td>
<td>East Central OH</td>
<td>C06</td>
<td>-</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M09</td>
<td>-</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J11</td>
<td>-</td>
<td>88</td>
</tr>
<tr>
<td>McCormick and Eshleman (this study)</td>
<td>Western MD</td>
<td>TMAT</td>
<td>74</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TMAT (Reclaimed Area)</td>
<td>74</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TSNR</td>
<td>68</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TSSR</td>
<td>74</td>
<td>87</td>
</tr>
</tbody>
</table>
Peak Runoff Rates

<table>
<thead>
<tr>
<th>Watershed</th>
<th>Area (ha)</th>
<th>Tc (min)</th>
<th>CN TR-55</th>
<th>Obs</th>
<th>Error</th>
<th>CN Obs</th>
<th>Error</th>
<th>CN TR-55</th>
<th>Obs</th>
<th>Error</th>
<th>CN TR-55</th>
<th>Obs</th>
<th>Error</th>
<th>CN TR-55</th>
<th>Obs</th>
<th>Error</th>
<th>CN TR-55</th>
<th>Obs</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNEF</td>
<td>3.0</td>
<td>20</td>
<td>70</td>
<td>72</td>
<td>+2</td>
<td>0.13</td>
<td>0.16</td>
<td>23%</td>
<td>0.38</td>
<td>0.41</td>
<td>8%</td>
<td>0.68</td>
<td>0.73</td>
<td>7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMAT</td>
<td>27.1</td>
<td>30</td>
<td>74</td>
<td>81</td>
<td>+7</td>
<td>1.29</td>
<td>2.03</td>
<td>57%</td>
<td>3.26</td>
<td>4.28</td>
<td>31%</td>
<td>5.62</td>
<td>6.80</td>
<td>21%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSNR</td>
<td>11.1</td>
<td>27</td>
<td>68</td>
<td>64</td>
<td>-4</td>
<td>0.24</td>
<td>0.21</td>
<td>-13%</td>
<td>0.89</td>
<td>0.84</td>
<td>-6%</td>
<td>1.78</td>
<td>1.71</td>
<td>-4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSSR</td>
<td>5.1</td>
<td>11</td>
<td>79</td>
<td>87</td>
<td>+8</td>
<td>0.54</td>
<td>0.80</td>
<td>48%</td>
<td>1.15</td>
<td>1.47</td>
<td>28%</td>
<td>1.86</td>
<td>2.20</td>
<td>18%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
River Basins: Method #1

Comparison of flood frequency distributions (log Pearson Type III = LP3 w/ weighted skew) computed using the annual maximum series of daily streamflow (AMSS)

a) Differences for 2 time periods (1949-1975; 1976-2006): assumes \textit{episodic} non-stationarity

b) Differences in moments using a 21-year moving window: better for addressing a \textit{secular} change

McCormick et al., \textit{WRR}, in revision
QP and P Trends

- **Georges Creek**
 - Graph showing trends in Qp and P over time.
 - Regression lines shown.
 - No trends were statistically significant ($p < 0.05$) using 3 different tests.

- **Savage River**
 - Graph showing trends in Qp and P over time.
 - Regression lines shown.

R’ Trends

- Graph showing trends in R’ over time for Georges Creek and Savage River.
- Regression lines shown.

River Basins: Method #2

- *regression lines shown*
- *no trends were statistically significant ($p \leq 0.05$) using 3 different tests*

McCormick et al., *WRR*, in revision
Paired rainfall-runoff analysis of 27 contemporary warm season storm events (1996-2006)

a) Classical hydrograph separation: computation of normalized runoff volume (R_v) and peak runoff (R_p)

b) Total event areal rainfall (P) and peak areal intensity (p_{max}) from the NWS WSR-88D (NEXRAD) “Stage III” operational radar rainfall product (archived)

c) Compare $R_v:P$, $R_p:p_{max}$, and centroidal lag (L_C)

d) Eleven events culled \textit{a priori} for violating pre-set conditions
Remnants of Hurricane Ivan (September 2004)

Mc Cormick et al., WRR, in revision
16 Runoff Events (1999-2006)

L_C (hr)
- y-int = -2.7
- $r^2 = 0.93$
- $p = 0.045$

$R_P:p_{max}^*$ (dim.)
- x-coef = 1.45
- $r^2 = 0.77$
- $p = 0.10$

$R_V:P$ (dim.)
- x-coef = 0.66
- $r^2 = 0.89$
- $p = 10^{-5}$

The Legacy of Deep Mining in Georges Creek

Photo Credit: USGS

McCormick et al., WRR, in revision
Stormflow peaks increase with increasing LCLUC: 25% mineland causes enhancement by a factor of about 40% at all frequencies.

Ferrari et al., WRR, in press
Conclusions

• Surface mining and land reclamation can amplify storm runoff responses of small catchments.
 – SCS-CN method often underestimates actual response

• Effects of mining were not detectable at the river basin scale using long gage records and conventional flood frequency methods.

• A comparative paired analysis produced significant results, in particular:
 – Comparable flood volumes (assumed)
 – Decreased centroidal lag (~ 3 hr)
 – Higher normalized peaks (~ 40%, across the board)

• Modeling suggests that increased mining and reclamation will further “enhance” flooding responses in Georges Creek.
Acknowledgments

Collaborators

P. Townsend, T. Lookingbill, L. Pitelka, W. Currie, M. Castro

Scientific Support at AL

J. Ferrari, C. Giffen, M. Ramsey, R. Richardson, G. Frech, M. Kline, J. Welch, D. Wiley, K. Kline, C. Kingdon

Data & Permissions

MDE - permits
MBOM - mining history
NRCS - aerial photography
USGS - historical streamflow data
NCDC-NOAA - historical precipitation data
Ian Littlewood - IHACRES
Paul Willison & Simon Mohr (deceased) - landowner permissions

Sponsors

A.W. Mellon Foundation
NASA LCLUC Program