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Possible channel types along a long profile from headwaters

to mouth
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Schumm’s (1977) Channel Types
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Mollard, 1973 — classification for Canadian streams based on

glacial geomorphic setting from air photo interpretation
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EXPLANATION MIDCONTINENT RIFT INTRUSIVE SUPERSUITE
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Drainage network position and local geology drive geomorphic response and

adjustment to urbanization — Miller Creek, Duluth, Minn. (Fitzpatrick et al. 2005)
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Channels and Floodplains = Fluvial Systems
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Vegetation and Fluvial Landforms
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“The life of every river sings its own song, but in most
the song Is long since marred by the discords of
misuse” Aldo Leopold, A Sand County Almanac
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Human Disturbance Disrupts the Balance of River Forces
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FIGURE 1.4 Schematic balance between modes of aggradation and degradation in streams; zero is the
threshold of critical power. Increases or decreases of one or more of the important variables may cause
the mode of stream operation to depart markedly from the threshold condition. (Originally from notes of
E. W. Lane; modified from Chorley et al., 1984.)

(Bull, 1991, “Geomorphic response to climate change”, p. 15; Lane 1955)
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Agriculture — Ditching, tiling, draining, dredging....
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Channel Evolution Model (CEM) — Qualitatively Describes

Time Dependent Channel Erosion Caused by Headward
Incision
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Agriculture in SW Wisconsin Driftless Area
19-20™ century gullies/sediment sources =
215t century tree-lined headwater channels

Pleasant Valley, site #27, 2009

Photo: D. J. Faulkner




Agriculture in SW Wisconsin Driftless Area
19-20™ century valley sedimentation =
215t bank erosion source of sediment
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Loss of floodplain micro- topography
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Logging Iin Northern Lakes and Forest

North Fish Creek Middle Main Stem
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ALTITUDE IN METERS
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Evolution of Midwest lowland streams

DRIFTLESS AREA — PRESETTLEMENT NPRTHERN LAKES AND FOREST — PRESETTLEMENT
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Geomorphic Responses and Time

(Bull, 1991, “Geomorphic response to climate change™)
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Geomorphic Response to Extreme Events



Consumption (BGD)

Irrigation). Note that over the projection period, water consumption
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Channel size increases with increasing
urbanization

Confounding factors: water diversions and storage, historical channel alterations, dams,
difficulty in identifying bankfull elevation
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Base-flow

channels?

* Once common across the Midwest?
*Direct connection between stream and
floodplain

 Rich habitat for multiple types and ages
of organisms

* Promote sediment and organic matter
deposition

» Transform nutrients into biomass
e Sequester carbon

Howards Branch Ann Arundel County; erg, Biohabltats; Inc;

Keith Underwood & Assoc. % USGS



Concluding Thoughts

Glacial landforms give diverse stream geomorphic settings

« Human disturbance has altered and limited the diversity of
natural stream geomorphic settings, especially in wetlands

 Knowing the history of human alterations and stream
responses helps to determine appropriate management and
rehabilitation strategies

 Widespread usage of channel design based on 1.5-yr
bankfull hydraulic geometry limits geomorphic diversity
especially in wetland settings
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