Achieving Contemporaneous Geomorphic Reclamation at El Segundo Mine, New Mexico

EMILY HYDRUSKO
ENGINEER I
PEABODY ENERGY
Our Experience in Geomorphic Reclamation

- El Segundo Mine has implemented 3 geomorphic reclamation areas
 - Pit 1
 - Learned importance of careful planning to reduce re-handle
 - Learned strategies for more feasible designs
 - Pit 5
 - Learned strategies to improve drain implementation
 - Learned importance of concurrent sloping
 - Pit 6 West
 - Demonstrated benefits of direct placing of spoil in final location
 - Learned how to most effectively cut in drains
Traditional Method for Designing Reclamation in the Southwest

- Main drainages developed based on ramp locations
- Drains designed based on wide flat bottomed channels mimicking native drains
- Mine cut by mine cut mass balance
- Areas in between ramps filled until a balance is reached
Traditional Coal Mine Reclamation

- Large incised drains usually built from mining ramps
- Long side slopes
- Little relief in topography
Concerns with Traditional Reclamation

- Limited secondary drainage
- Maintenance issues
 - Rills and gullies
 - Prolonged bond release
- Difficulty establishing vegetation
 - Increased susceptibility to wind
 - Few areas for cool season grasses to establish
 - End use of mined lands requires diverse vegetation establishment
El Segundo Mine has a unique opportunity to include geomorphic reclamation techniques contemporaneously. The process being cultivated at the El Segundo Mine includes:

- Volumetric cut/fill for overall material balance
- Defined drainages on the base contours checked for capacity
- Using the base contours to define areas appropriate for geomorphic reclamation
 - Usually side slopes to help stabilize potential erosion areas
Geomorphic Method for Contemporaneous Reclamation

- Small boundaries used in Carlson Natural Regrade** or other similar methods
- Finally all contours are combined together to create a final post mining topography
- The final contours can then be used by engineering to design dumps and put in the geomorphic reclamation contemporaneously

**Note, Peabody does not endorse Carlson Natural Regrade as the only software for geomorphic reclamation
Criteria Each Geomorphic Reclamation Design Must Meet

- **Sinuosity**
 - A reasonable range of sinuosity values must be met with each design and reflected as such on all maps

- **Drainage density**
 - El Segundo Mine Permit requires 60 linear ft/acre
 - Determined by our pre-mining conditions

- **Overall channel stability**
 - Each channel must remain stable with a storm producing a flow of 4ft/sec
How El Segundo Mine is Achieving Geomorphic Criteria

- **Sinuosity**
 - Trial and error lead us to find a range of sinuosity values that is both stable and reasonable to build

- **Drainage density**
 - Geomorphic Reclamation incorporates drainage density

- **Overall channel stability**
 - Generally speaking previous reclamation plans did not include side slope channels
 - Overland flow often causes erosion on such slopes
 - Breaking up the hill slope and adding small drainage ways slows the water down minimizing erosion
Complications (when using geomorphic contemporaneously)

- **Time**
 - More detailed designs take more time especially in the beginning stages of incorporation

- **Added resources (cost)**
 - Using available equipment to do detail work adds cost

- **Unfamiliar designs**
 - Engineers, operators and supervisors alike have never built similar designs in the field
Example: Pit 1 Design

Original Design

Modified Design
Example: Pit 1 Ongoing
Example: Pit 1 Ongoing
Example: Pit 1
Example: Pit 1
Example: Pit 1 Strategies Learned

- Dumps need to be more carefully designed and monitored
 - To help prevent over-dumping and causing more dozer work for a particular area
- It is not efficient to cut the drains in later
 - This re-handles the dirt
- Consistency of operators on the project is essential
Example: Pit 5
Example: Pit 5 Design
Example: Pit 5

Tail dump areas
Example: Pit 5 Ongoing
Example: Pit 5 D11 Drain Cut
Example: Pit 5 Strategies Learned

- Dumping lifts in between drain areas is more efficient
- Tail dumping provides a clear view of where ridges and drainages are early in the process
- Hard to gauge how much dirt is still needed when shaping of ridges has not been started
Example: Pit 6 West

North

Major mine access ramp
Example: Pit 6 West Before
Example: Pit 6 West Drains

Initial shapes of drains provide boundaries for tail dumps
As well as a boundary for dozers to push towards
Example: Pit 6 West Drain Cuts

First fill tail dumps

Drains cut prior to fill
Example: Pit 6 West Ongoing
Example: Pit 6 West
Example: Pit 6 West Strategies Learned

- Staking drains before any work begins keeps dumps aligned.
- Creating a dozer onboard GPS guidance file just for the drains allows for greater detail within the drains.
- Cutting out the drains to grade before dumping in any material gives a clear boundary for dumping in dirt.
- Sloping the dump to grade while trucks are dumping keeps rework to a minimum.
Engineering Strategies

- Coordinate geomorphic reclamation with mining activities
- Work closely with production supervisors on go to areas
 - Reduce unproductive time
 - Emphasize importance of concurrent reclamation with mining
- Incorporating geomorphic designs into both short term and long term planning
Keeping Grading Contemporaneous: Challenges

- **Falling behind**
 - Early phases of incorporating geomorphic proved to be time consuming leaving potential to fall behind
 - Dedicated reclamation designer should be observing the pace and offering suggestions

- **Bogged down by detail**
 - Early designs were more complicated due to lack of knowledge on difficulty
 - Using a dedicated crew for reclamation promotes ownership and pride in results
Keeping Grading Contemporaneous: Challenges

- **Conveying desired results**
 - Enabling the operators and supervisors to see the big picture
 - Continuous feedback with the operators to ensure that they understand what the outcome should be
 - Geomorphic reclamation is an ongoing process shifting to the more challenging geomorphic reclamation
 - More creativity in the designs leaving diverse landscape
 - Makes reclamation more of an art than a science
The Learning Curve

- Extraneous detail holds up progress
 - Pit 1 showed how unnecessary detail can hold up progress
- Breaking the habit of traditional slopes
- More dirt does not always equal better results
 - Over-dumping in pit 1 hindered results and timing
The Learning Curve

- Sloping needs to be concurrent
 - Tail dumped pit 5 first, started sloping later
 - Difficult to estimate where we needed more dirt
 - Creates extra dozer work not associated with mining

- Drainage areas need attention first
 - Left drains in Pit 5 for last then struggled to get put in

- Must to be able to modify designs due to the unforeseen
The Learning Curve

- Definite progression in designs implemented
 - Pit 6 west was more efficient than pit 5 and pit 5 was more efficient than pit 1
 - The more a design is explained the better the results
 - Different maps depicting the big picture as well as detail work maps aid in getting everyone on the same page
- Each design will have its issues and needs to be dynamic to account for issues that arise from contemporaneous geomorphic reclamation
Findings

- El Segundo Mine has found that using geomorphic reclamation on side slopes is beneficial
 - Overall appearance of the reclamation is more natural
 - Long term maintenance should be reduced
 - As processes to incorporate geomorphic reclamation improve, onsite efficiency in building such designs should improve
Findings

- Using geomorphic reclamation contemporaneously is a dynamic process requiring some flexibility
- Better collaboration between engineering and production is leading to overall better results
- Greater pride in the reclamation process
Summary

- Traditional coal mine reclamation tends to create maintenance issues such as erosion
- Geomorphic reclamation requires strategic planning
- Monitoring of design implementations is critical
- Flexibility to slightly alter designs to fit mining
- Contemporaneous geomorphic reclamation is feasible at the El Segundo Mine
Questions?