Geomorphic Principles Applied to Reclamation at Navajo Mine

BHP Billiton
Navajo Mine
Mine Design Group
May 20, 2014
Contents

• History of New Mexico Coal
• Regional Topography
• New Mexico Coal Geomorphic History
• Navajo Mine Operation
• Navajo Mine Geomorphic Reclamation
 – Design Objectives
 – Past
 – Present
 – Future
• Acknowledgements
New Mexico Coal: Overview

Overview

- The San Juan and Navajo coal mines are located near Farmington, New Mexico and supply two different local coal fired power plants.

- **San Juan:**
 - Underground longwall operation
 - 100% owned by BHP Billiton
 - Annual production of 6-8 million tons to San Juan Generating Station
 - Current Contract through 2017

- **Navajo:**
 - Open-cut dragline operation with coal supplied by railroad to the Four Corners Power Plant
 - Annual production of 7-9 million tons through December 2013
 - Annual Production post June 2013 approximately 6 million tons
New Mexico Coal

• La Plata Mine
• San Juan Mine
• Navajo Mine
• Farmington Office
Regional Topography

San Juan Mine Drainages

La Plata Mine Drainages

Navajo Mine Hosteen Area Drainages
New Mexico Coal’s Geomorphic History – La Plata Mine

Buckeye and Elk Point (Panel 5 Highwall)
• Deepest final pit at La Plata Mine
• 210 feet deep
New Mexico Coal’s Geomorphic History – San Juan Mine

Photograph of Cottonwood Area during landform construction.
Arrow shows landmark reference.

Photograph of Cottonwood Area during mining operations.
Arrow shows landmark reference.
Navajo Mine Overview

- Operations began in 1963
- Approximately 6 million tons of annual production
- Delivered quality of
 - 8,700 BTU/lb
 - 23% Ash
 - Sulfur < 1%
- Sole supplier to Four Corners Power Plant (FCPP)
- Owned by the Navajo Transitional Energy Company, LLC (NTEC)
- Operated by BHP Billiton through December 2016
- Current coal sales contract through 2016
- Newly approved coal sales contract between NTEC and FCPP from 2016 to 2031
- Significant resources available for future growth
Navajo Mine – Earthmoving Operations

C. Brandt, Production Planner, Mine Design Group, May 2014
Navajo Mine Geomorphic Design Objectives

Perm Standards
- Ensured slopes in design meet permit standards
- Overall slope percentages and acres comparable to the pre-mining area

Land Form
- Utilized current spoils topography to increase diversification of design land forms
- Improved slopes in particular areas to enhance sustainability
- Defined ridges and valleys while honoring the major drainage routes
- Applied geomorphic principles where practicable

Improvement In Erosion Control Structures For Sustainability
- Designed down-drains for a 100 year 6 hour storm event
- Reduced the need for terraces and down-drains in final reclamation
Navajo Mine Past Geomorphic Reclamation

Chinde Main Channel and Chinde Branch 2 Geomorphic Reclamation
Navajo Mine Present Geomorphic Reclamation
FSC revision design challenges include:

- Working towards an overall balanced design surface while maintaining the material balance in the specific pit areas
- Reducing down drains along final pit tie-in areas
- Tying into previously reclaimed areas and drainages
- Managing the final pit reclaimed channel drainage grades
- Integrating geomorphic principles into an area where this type of reclamation was not previously planned
Triangulation using Vulcan of the Area 3 Post-mining topography.

Note the final dragline pits and spoil peaks.
Area 2 FSC – Hosteen/Yazzie Pits

Previous FSC

Revised FSC

10' Contours

5' Contours
Area 2 FSC – Barber Pits

Previous FSC

Revised FSC

10' Contours

5' Contours
Area 2 Predicted Sediment Yields

Previous Design
- Pre-mine=31,293 tons
- Post-mine=18,926 tons
- Decrease in sediment yield of 12,367 tons

New Design
- Pre-mine=31,845 tons
- Post-mine=19,491 tons
- Decrease in sediment yield of 12,354 tons
Chinde Drainage Density
Pre-mine drainage density Chinde Arroyo – 1.4 miles/sq. mile for entire drainage area and 2.8 miles/sq. mile for area disturbed by mining
Previous Drainage Density Design – 4.7 miles/sq. mile
Revised Drainage Density Design – 4.6 miles/sq. mile

Hosteen Drainage Density
Pre-mine drainage density Hosteen Arroyo – 3.18 miles/sq. mile for entire drainage area and 2.8 miles/sq. mile for area disturbed by mining
Previous Drainage Density Design Hosteen Arroyo – 6.1 miles/sq. mile
Revised Drainage Density Design Hosteen Arroyo – 5.2 miles/sq. mile

Barber Drainage Density
Pre-mine drainage density Barber Arroyo – 1.75 miles/sq. mile for entire drainage area and 1.46 miles/sq. mile for area disturbed by mining
Previous Drainage Density Design Barber Arroyo – 6.7 miles/sq. mile
Revised Drainage Density Design Barber Arroyo – 5.3 miles/sq. mile

South Barber Drainage Density
Pre-mine drainage density South Barber Arroyo – 5.93 miles/sq. mile for entire drainage area
Previous Drainage Density Design South Barber Arroyo – Barber and South Barber were previously combined
Revised Drainage Density Design South Barber Arroyo – 5.6 miles/sq. mile
Channel Grades

Chinde
- Previous FSC – 0.76% slope
- Revised FSC – 0.91% slope

Hosteen
- Previous FSC – 1.43% slope
- Revised FSC – 0.80% slope

Barber
- Previous FSC – previous drainage combined into South Barber Channel
- Revised FSC – 0.41% slope

South Barber
- Previous FSC – 0.91% slope
- Revised FSC – combined with Barber Channel
Previous FSC Slope Distribution by Area

<table>
<thead>
<tr>
<th>Percent</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area 2</td>
</tr>
<tr>
<td>0-2.9%</td>
<td>26.9%</td>
</tr>
<tr>
<td>3-5.9%</td>
<td>28.3%</td>
</tr>
<tr>
<td>6-8.9%</td>
<td>20.4%</td>
</tr>
<tr>
<td>9-11.9%</td>
<td>11.6%</td>
</tr>
<tr>
<td>12-14.9%</td>
<td>6.6%</td>
</tr>
<tr>
<td>15-19.9%</td>
<td>4.1%</td>
</tr>
<tr>
<td>> 20.0%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Revised FSC Slope Distribution by Area

<table>
<thead>
<tr>
<th>Percent</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area 2</td>
</tr>
<tr>
<td>0-2.9%</td>
<td>28.8%</td>
</tr>
<tr>
<td>3-5.9%</td>
<td>31.4%</td>
</tr>
<tr>
<td>6-8.9%</td>
<td>18.9%</td>
</tr>
<tr>
<td>9-11.9%</td>
<td>10.0%</td>
</tr>
<tr>
<td>12-14.9%</td>
<td>5.5%</td>
</tr>
<tr>
<td>15-19.9%</td>
<td>3.5%</td>
</tr>
<tr>
<td>> 20.0%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>
Figure 12.3-2
Area 2 Slope Histogram

Distribution

Slope Range (% Slope)

0-2.9% 34.9% 26.9%
3-5.9% 28.3% 27.6%
6-8.9% 20.4% 14.3%
9-11.9% 11.6% 8.4%
12-14.9% 6.6% 5.1%
15-19.9% 4.1% 4.3%
>20.0% 5.5% 2.2%

FSC
Pre-mine
Figure 12.3-2
Area 2 Slope Histogram

<table>
<thead>
<tr>
<th>Slope Range (%)</th>
<th>FSC</th>
<th>Pre-mine</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2.9%</td>
<td>28.8%</td>
<td>34.9%</td>
</tr>
<tr>
<td>3-5.9%</td>
<td>31.4%</td>
<td>27.6%</td>
</tr>
<tr>
<td>6-8.9%</td>
<td>18.9%</td>
<td>14.3%</td>
</tr>
<tr>
<td>9-11.9%</td>
<td>10.0%</td>
<td>8.4%</td>
</tr>
<tr>
<td>12-14.9%</td>
<td>5.5%</td>
<td>5.1%</td>
</tr>
<tr>
<td>15-19.9%</td>
<td>3.5%</td>
<td>4.3%</td>
</tr>
<tr>
<td>> 20.0%</td>
<td>1.9%</td>
<td>5.5%</td>
</tr>
</tbody>
</table>
Benefits

FSC revision design benefits include:

- Achieved overall material balance
 - North pit areas balance
 - South pit areas balance
- Increased reclamation productivity
- Overall land form diversity has been improved
- Removed terraces in certain areas
- Changed land form slopes in areas of concern from convex to concave
- Removed a total of 4 down drains from final reclamation
- Applied geomorphic principles to increase diversity and sustainability
- Overall decrease in the modeled sediment yield
Acknowledgements

Tim Ramsey, Superintendent of Compliance and Reclamation, BHP Billiton, Farmington, NM 87402

Leonard Raymond, Civil P.E., BHP Billiton, Farmington, NM 87402

Brent Musslewhite, Manager Environmental Execution, BHP Billiton, Farmington, NM 87402

Steve Perkins, Superintendent Permitting & Technical Services, BHP Billiton, Farmington, NM 87402

Daphne Place-Hoskie, Superintendent of Haulage, BHP Billiton, Farmington, NM 87402

Ron Van Valkenburg, Contractor

GEOMAT, Contractor, Farmington, NM 87402

Carlson Software (2012). Carlson Natural Regrade Program. Maysville, KY.