BLAST DESIGN RULES OF THUMB

(Given: Hole depth, Rock type, and Distance to structure)
HOLE DIAMETER (d) = hole depth (H) divided by 5 to 10.

$$
\begin{equation*}
\mathrm{d}(\mathrm{in})=\mathrm{H}(\mathrm{ft}) / 5 \text { to } \mathrm{H}(\mathrm{ft}) / 10 \tag{TypicallyH/7}
\end{equation*}
$$

BURDEN (B) = 2 to 3 times the diameter.

$$
\mathrm{B}(\mathrm{ft})=2 \mathrm{Xd} \text { (in) to } 3 \mathrm{X} \mathrm{~d}(\mathrm{in}) \quad \text { (Typically } 2.5 \mathrm{X} \mathrm{~d})
$$

SPACING (S) = 1 to 2 times the burden.

$$
\mathrm{S}(\mathrm{ft})=1 \mathrm{X} \quad \mathrm{~B}(\mathrm{ft}) \text { to } 2 \mathrm{X} \quad \mathrm{~B}(\mathrm{ft})
$$

STEMMING (T) = 0.5 to 1.0 times the burden.

$$
\begin{equation*}
\mathrm{T}(\mathrm{ft})=0.5 \mathrm{X} \mathrm{~B}(\mathrm{ft}) \text { to } 1.0 \mathrm{X} \mathrm{~B}(\mathrm{ft}) \tag{Typically0.7XB}
\end{equation*}
$$

POWDER COLUMN (PC) = hole depth minus stemming (T), backfill (F) and decking (T_{d})

$$
\mathrm{PC}(\mathrm{ft})=\mathrm{H}(\mathrm{ft})-\mathrm{T}(\mathrm{ft})-\mathrm{F}(\mathrm{ft})-\mathrm{T}_{\mathrm{d}}(\mathrm{ft})
$$

LOADING DENSITY (LD) $=0.3405$ times the explosive density times the hole diameter squared.
$\mathrm{LD}(\mathrm{lb} / \mathrm{ft})=0.3405 \mathrm{X}$ density $(\mathrm{gm} / \mathrm{cc}) \mathrm{X} \mathrm{d}^{2}(\mathrm{in}) \quad$ (or Mfg design guide)
CHARGE WEIGHT (CW) = powder column times the loading density.

$$
\mathrm{CW}(\mathrm{lb})=\mathrm{PC}(\mathrm{ft}) \mathrm{X} \mathrm{LD}(\mathrm{lb} / \mathrm{ft})
$$

POWDER FACTOR (PF) = powder per hole divided by rock volume per hole.

$$
\operatorname{PF}\left(\mathrm{lb} / \mathrm{yd}^{3}\right)=\mathrm{CW}(\mathrm{lb}) /(\mathrm{B}(\mathrm{ft}) \mathrm{X} \mathrm{~S}(\mathrm{ft}) X \mathrm{H}(\mathrm{ft}) / 27)
$$

SCALED DISTANCE $\left(\mathbf{S D}_{\mathbf{2}}\right)=$ Distance to structure divided by square root of the charge weight.

$$
\mathrm{SD}_{2}\left(\mathrm{ft} / \mathrm{b}^{1 / 2}\right)=\text { distance }(\mathrm{ft}) / \mathrm{CW}^{1 / 2}\left(\mathrm{lb}^{1 / 2}\right) \quad(\text { Greater than } 55)
$$

PEAK PARTICLE VELOCITY (PPV) = 119 or 438 times scaled distance to the -1.52 power.

```
PPV(in/s)=438 X (SD2 )
(Compliance)
PPV(in/s)=119 X (SD2 )```

