BLAST DESIGN RULES OF THUMB - Coal
(Given: Hole depth, Rock type, and Distance to structure)

HOLE DIAMETER \((d) \) = hole depth \((H) \) divided by 5 to 10.

\[d(\text{in}) = H(\text{ft}) / 5 \text{ to } H(\text{ft}) / 10 \]
(Typically \(H/7 \))

BURDEN \((B) \) = 2 to 3 times the diameter.

\[B(\text{ft}) = 2 \times d(\text{in}) \text{ to } 3 \times d(\text{in}) \]
(Typically \(2.5 \times d \))

SPACING \((S) \) = 1 to 2 times the burden.

\[S(\text{ft}) = 1 \times B(\text{ft}) \text{ to } 2 \times B(\text{ft}) \]
(Typically \(1.5 \times B \))

STEMMING \((T) \) = 0.5 to 1.0 times the burden.

\[T(\text{ft}) = 0.5 \times B(\text{ft}) \text{ to } 1.0 \times B(\text{ft}) \]
(Typically \(0.7 \times B \))

POWDER COLUMN \((PC) \) = hole depth minus stemming \((T) \), backfill \((F) \) and decking \((Td) \)

\[PC(\text{ft}) = H(\text{ft}) - T(\text{ft}) - F(\text{ft}) - Td(\text{ft}) \]

LOADING DENSITY \((LD) \) = 0.3405 times the explosive density times the hole diameter squared.

\[LD(\text{lb/ft}) = 0.3405 \times \text{density(gm/cc)} \times d^2(\text{in}) \]
(or Mfg design guide)

CHARGE WEIGHT \((CW) \) = powder column times the loading density.

\[CW(\text{lb}) = PC(\text{ft}) \times LD(\text{lb/ft}) \]

POWDER FACTOR \((PF) \) = powder per hole divided by rock volume per hole.

\[PF(\text{lb/yd}^3) = CW(\text{lb}) / (B(\text{ft}) \times S(\text{ft}) \times H(\text{ft}) / 27) \]

SCALED DISTANCE \((SD^2) \) = Distance to structure divided by square root of the charge weight.

\[SD^2(\text{ft/lb}^{1/2}) = \text{distance(ft)} / CW^{1/2}(\text{lb}^{1/2}) \]
(Greater than 55)

PEAK PARTICLE VELOCITY \((PPV) \) = 119 or 438 times scaled distance to the \(-1.52\) power.

\[PPV(\text{in/s}) = 438 \times (SD^2)^{-1.52} \]
(Compliance)
\[PPV(\text{in/s}) = 119 \times (SD^2)^{-1.52} \]
(Expected)

Reference: Atlas, Explosives and Rock Blasting