Phase I Bond Release Application J19 and J21 Coal Resource Areas, Kayenta Mine

TABLE OF CONTENTS

Section 2. Phase I Bond Release Supporting Information - Backfilling, Grading, Suitable Material, Soil, and Surface Water Data

	•	,	
			<u>Page</u>
Introduc	ction		2.1
Backfill	ling a	and Grading	2.1
Surface	Water	Data	2.4
Spoil Sa	amplin	ng and Suitable Material Replacement	2.4
Suitable	e Plan	t Growth Material Thickness	2.5
List of	Table	es	
	2.1.1	Pre- and Post-Mining Slope Analysis for J19 Permanent Program	
		Reclaimed Areas	2.2
	2.1.2	Pre- and Post-Mining Slope Analysis for J21 Permanent Program	
		Reclaimed Areas	2.3
	2.2	Suitable Plant Growth Material Thickness Verification Sites Sampled	
		By PWCC at J19 and J21 During September 2022	2.2
List of	Attac	chments	
		s-built Information for the J21 Reclamation Drainage Channels	
		ertification of Phase I Reclamation Activities	
		TOC for Laboratory Data Used to Evaluate Spoil Suitability and Determ	ine
		Mitigation Thickness Values for the J19 CRA	
	2.3b	TOC for Laboratory Data Used to Evaluate Spoil Suitability and Determ	ine
		Mitigation Thickness Values for the J19 CRA	
List of	Maps		
	2.1 J	19 and J21 Phase I Bond Release, Topsoil Thickness Verification	
	2.2 J	19 and J21 Phase I Bond Release, Spoil Sample Data	
	2.3 J	19 and J21 Phase I Bond Release, Postmine Slope	
	2.4 J	19 and J21 Phase I Bond Release, Premine Slope	
	2.5 J	19 and J21 Phase I Bond Release, Postmine Topographic Surface Compari	son
	2 6 .T	21 Hydrology Parameters and Channel Profiles (2 Sheets)	

SECTION 2. Phase I Bond Release Supporting Information

Backfilling, Grading, Suitable Material, Soil, and Surface Water Data

Introduction

The Phase I Bond Release information contained in this application for the J19 and J21 Coal Resource Areas (CRAs) consists primarily of backfilling, grading, soil and suitable plant growth material replacement, drainage channel as-builts, surface water description, and slope analysis.

Backfilling and Grading

There are no permanent support facilities included in this J19 and J21 Phase I Bond Release Application. The permanent support facilities will be included in later bond release applications. Final grading of permanent program lands within the J19 and J21 areas occurred from 2002 to 2022. Final grading status for the release areas shown on Map 1.1 were previously reported and submitted with supporting maps to the regulatory authority in the following annual monitoring reports.

Peabody Western Coal Company (PWCC). 2003-2023. 2002-2022 Minesoil Reconstruction and Revegetation Activities Reports, Black Mesa and Kayenta Mines, Flagstaff and Kayenta, Arizona. Reports Prepared for: The Office of Surface Mining Reclamation and Enforcement, Western Service Center, Denver, Colorado.

The pre-mining and post-mining topography consists of rolling hills dissected by ephemeral drainage channels. The regulations require the post-mining graded slopes must approximate the pre-mining natural slopes. Approximate original contour means that surface configuration is achieved by backfilling and grading of the mined area so that the reclaimed area resembles the general surface configuration of the surrounding terrain with all final highwall and spoil piles eliminated. In order to perform a realistic comparison of the pre-mining and post-mining slope measurements, PWCC utilized ESRI ArcGIS 10 Spatial Analyst software to generate slope measurement polygons within the entire J19 and J21 reclamation areas included in this submittal. The J19 and J21 release areas included with this Phase I bond release application are all Permanent Program Lands. The J19 and J21 reclamation areas were evaluated to compare the slope stability of the pre- and post-mining landforms and general surface configuration.

The slope polygons were grouped into slope measurement ranges based on the following six slope measurement classifications:

- 1. <9%
- 2. 9% to 13%
- 3. 13% to 18%
- 4. 18% to 25%
- 5. 25% to 33%
- 6. >33%

These slope measurement classifications are like the classifications utilized in the AZ-0001F Permit, Chapter 26, Surface Stabilization. The location of the area associated with each of the pre- and post-mine slope measurement classes for the J19 and J21 reclamation areas can be found on Map 2.3 (Post-Mine) and Map 2.4 (Pre-Mine). Tables 2.1.1 and 2.1.2 provide a summary of the area in each slope measurement classification before mining and after mining for the J19 and J21 release areas, respectively:

Table 2.1.1. Pre- and Post-Mining Slope Analysis for J19 Permanent Program Reclaimed Areas.

POST - MINING SLOPE ANALYSIS:

RANGE	BEGINNING (%)	END (%)	AREA (Ac.)	PERCENT of TOTAL AREA	POST - MINING SLOPE AREA vs. PRE - MINING SLOPE AREA (%)
1	0	9	20.37	54.81	+16.83
2	9	13	13.07	35.16	+5.77
3	13	18	2.60	6.99	-2.10
4	18	25	1.10	2.96	-16.98
5	25	33	0.03	0.08	-2.95
6	33	+	0.00	0.00	-0.56

PRE - MINING SLOPE ANALYSIS:

RANGE	BEGINNING (%)	END (%)	AREA (Ac.)	PERCENT of TOTAL AREA
1	0	9	14.12	37.98
2	9	13	10.92	29.39
3	13	18	3.38	9.09
4	18	25	7.41	19.94
5	25	33	1.13	3.03
6	33	+	0.21	0.56

Table 2.1.2. Pre- and Post-Mining Slope Analysis for J21 Permanent Program Reclaimed Areas.

POST - MINING SLOPE ANALYSIS:

					POST - MINING SLOPE AREA
	BEGINNING	END	AREA	PERCENT	vs.
RANGE	(%)	(%)	(Ac.)	of TOTAL AREA	PRE - MINING SLOPE AREA (%)
1	0	9	114.97	42.93	-8.61
2	9	13	50.42	18.83	-0.67
3	13	18	49.64	18.54	+11.97
4	18	25	41.30	15.42	-3.83
5	25	33	8.52	3.18	+0.41
6	33	+	2.94	1.10	+0.73

PRE - MINING SLOPE ANALYSIS:

RANGE	BEGINNING (%)	END (%)	AREA (Ac.)	PERCENT of TOTAL AREA
1	0	9	138.02	51.54
2	9	13	52.22	19.50
3	13	18	17.59	6.57
4	18	25	51.53	19.25
5	25	33	7.43	2.77
6	33	+	0.99	0.37

As illustrated above, the post-mine topography has very similar slope gradient percentages in each of the six range categories compared with the original pre-mine topography. Overall, the J19 post-mine topography has approximately 17% less 18-25% slopes and approximately 17% more 0-9% slopes than the pre-mine topography. Overall, the J21 post-mine topography has approximately 9% less 0-9% slopes and approximately 12% more 13-18% slopes than the pre-mine topography. The as-built post-mine surface shown on Map 2.3 was compared to the Estimated Post-mining Topographic (PMT) Map, Drawing 85352, Sheets M10, M11 and N11, Volume 29 of Permit AZ-0001F. The reclaimed surface was within +/- 20 feet of the estimated post-mine contours in more that 97% of the area as shown on Map 2.5. The outlier areas shown on Map 2.5 are very small and blend with the adjacent PMT and overall surface configuration.

Attachment 2.1 includes the as-built information for the J21 reclamation drainage channels shown on Map 2.6 (Sheets 1 and 2 of 2). This is similar to the map submitted previously in the Annual Surface Stabilization Reports. Based on the information in Attachment 2.1 and a field inspection of the area, PWCC has demonstrated the post-mining reclamation drainage

structures are stable and can safely pass the design runoff. The locations of these drainage structures are shown on Map 2.6 (2 sheets).

In conclusion, the J19 and J21 reclamation areas have been graded to very similar overall slopes compared to pre-mine topography. Grading was completed to eliminate final highwalls and spoil piles, to ensure stability, to blend post-mining and undisturbed pre-mining slopes, to reestablish a positive stable drainage network, and to facilitate the livestock grazing, wildlife habitat, and cultural plant post-mining land uses. The J19 and J21 backfilling, grading, and drainage system construction was conducted in conformance with the applicable regulatory requirements and approved reclamation plans.

Surface Water Data

There have been no NPDES discharges from Pond J7-JR located in a tributary of Red Peak Valley Wash down gradient from the J19 and J21 bond release watersheds. There have been very few NPDES discharges from Ponds J21-H and J21-I located in tributaries of Dinnebito Wash down gradient from the J21 bond release watershed. A less than 10-year/24-hour rainfall discharge occurred at Pond J21-I on August 3, 2022. Monitoring of pond discharges on August 3 showed applicable effluent limitations were not exceeded. Twenty (20) complete water quality samples have been collected from two of these three ponds during the past seven (7) years per the approved monitoring schedule presented in Table 10, Chapter 16 of the Permit Application Package (PAP) for Permit AZ-0001F. Fourteen (14) water quality samples (two per year) were collected from Pond J7-JR over the past seven years and six samples from Pond J21-I. Laboratory data for all twenty samples indicate all but one analyte in four samples met livestock water quality standards. Samples collected on 7/13/18, 11/12/19, 1/9/20, and 8/27/21 at Pond J7-JR exceeded the livestock water quality standard for field pH with values of 9.18, 9.10, 9.95, and 9.42, respectively. The standard limit for livestock water pH is 9.0. Note that laboratory-determined pH for all twenty samples were less than or equal to this standard limit.

Spoil Sampling and Suitable Material Replacement

Final graded spoil for the J19 and J21 CRAs permanent program lands was sampled during eight (8) years during 2005, 2006, 2008, 2012, 2014, 2017, 2021, and 2022 (as documented in Attachments 2.3a and 2.3b) to comprehensively evaluate suitability and determine suitable plant growth material replacement requirements per Chapter 22, Volume 11, Permit AZ-0001F. All spoil sampling and data evaluations were completed using procedures and suitability criteria presented in Chapter 22, Volume 11, Permit AZ-0001F. Spoil sampling results were

previously reported and submitted with supporting maps to OSMRE in seven (7) annual monitoring reports as referenced below and documented in Attachments 2.3a and 2.3b. Spoil sampling results from 2022, included in Attachment 2.3b, will be submitted to OSMRE in 2023. Peabody Western Coal Company (PWCC). 2006, 2007, 2009, 2013, 2015, 2018, 2022, 2023. 2005, 2006, 2008, 2012, 2014, 2017, 2021, 2022 Minesoil Reconstruction and Revegetation Activities Reports, Black Mesa and Kayenta Mines, Flagstaff and Kayenta, Arizona. Reports Prepared for: The Office of Surface Mining Reclamation and Enforcement, Western Service Center, Denver, Colorado.

Spoil sample laboratory data from the reports listed above that is pertinent to the Phase I bond release area is included in Attachment 2.3a for the J19 CRA and Attachment 2.3b for the J21 CRA. A total of 121 sites, 15 in J19 and 106 in J21 were located on final graded spoil slopes and sampled within the designated Phase I release areas. Ninety-six (96) of the 121 sites sampled (79%) as listed in Attachments 2.3a and 2.3b and shown on Map 2.2 had suitable spoil characteristics from the surface to three (3) feet and required no additional suitable subsoil and substratum material to be replaced before applying one foot of suitable surface soil. Topsoil, suitable residual soils, and weathered overburden derived from mostly scoria, sandstone, and siltstone were used to bury unsuitable spoil at J19 and J21 when 2, 3, or 4 feet of suitable mitigation material was required as shown on Map 2.2 Four feet or more of suitable residual soils and weathered overburden were used in eight (8) cultural planting areas that total 20.9 acres. Durable sandstone, siltstone, and scoria overburden were used to construct two (2) rocked downdrains and drainages (0.3 acres). Occasionally, topsoil was used in J19 and J21 as mitigation material as observed by the field supervisors during reclamation work and as noted by the suitable plant growth material thickness survey. An average of 0.5 feet of mitigation material was required for the entire Phase I release area (305 acres) based on the comprehensive graded spoil sampling suitability analysis presented in Attachments 2.3a and 2.3b. For areas that have had suitable plant growth material replaced (222 acres), an average of 0.6 feet of mitigation material was required based on the comprehensive graded spoil sampling suitability analysis presented in Attachments 2.3a and 2.3b. As documented in the next section titled Suitable Plant Growth Material Thickness, the mean thickness of mitigation material replaced for this 222-acre area equaled 1.7 feet (excluding one (1) foot of topsoil, suitable residual soils, and weathered scoria overburden at the surface).

Suitable Plant Growth Material Thickness

Four feet of suitable plant growth material as defined in Chapter 22, Volume 11, Permit AZ-001F was replaced on final graded slopes of permanent program lands within the J19 and J21

CRAs from 2009 to 2022. Suitable plant growth material replacement status for most of the release areas shown on Map 1.1 were previously reported to the regulatory authority on the Reclamation Status Map 2 (as of December 31, 2021) shown on the Southeast Sheet contained in the 2021 Reclamation Status and Monitoring Report, Black Mesa and Kayenta Mines (submitted June 2022). Suitable plant growth material replacement areas for the 2022 calendar year will be submitted to the regulatory authority with the next annual report in May 2023. Soil was redistributed on final graded slopes from stockpiles or replaced directly from soil removal areas prior to ripping and contour discing. Pursuant to Chapter 22 of Permit AZ-0001F, the thickness of soil replaced shall exceed the minimum average of 1 foot.

Eight (8) cultural planting sites, totaling 20.9 acres combined as shown on Map 2.1, received four feet or more of suitable residual soils and weathered overburden. Two (2) rocked downdrains and drainages, totaling 0.3 acres as shown on Map 2.2, received suitable overburden derived from predominantly scoria, sandstone, and siltstone. Topsoil was not replaced at these ten (10) sites that totaled 21.2 acres.

One suitable plant growth material thickness survey of the J19 and J21 reclaimed areas included with this Phase I bond release application was completed during September and December 2022 as shown on Map 2.1. Personnel from Peabody Western Coal Company (PWCC) observed sites in the J19 and J21 reclaimed areas in order to verify the suitable plant growth material replacement thickness. A stratified grid sampling scheme using a random number generator program was used for the PWCC survey to locate 16 sites within the topsoiled, cultural planting, and suitable soil areas of J19 (37 acres) and J21 (185 acres) prior to going into the field. Suitable plant growth material thickness verification sites were not placed within the rocked downdrain, large drainage areas, areas in J21 that have not yet been topsoiled, nor the grubbed area in J21 that, when combined totaled 82.6 acres. A sampling density of about 1 site per 14 acres was used; a slightly higher density than those used and approved previously at Kayenta Mine for the N1/N2, N7/N8, N9, N11, N14, J16, J19, and J21 soil thickness evaluations. A Tremble GeoXT survey grade GPS unit was used to navigate to each of the sites. At all sites, either a 3 ½-inch bucket auger or backhoe pit were used to verify the soil and mitigation material thickness by excavating to the contact with spoil. The results of the soil and mitigation material thickness verification survey are shown in Table 2.2 and Map 2.1 shows all sampled sites with corresponding thickness values.

Sixteen (16) sample sites were randomly placed within the 222 acres of disturbed lands that received suitable plant growth material within the release area. Suitable plant growth material thickness was verified at all 16 sites. Suitable plant growth material thickness among the 16 profiles placed over the J19 and J21 release areas ranged from 1.0 to more than 7.0 feet. The mean topsoil thickness value, excluding thickness attributed to suitable residual soils and suitable overburden derived from predominantly scoria and sandstone used in the cultural planting areas noted in Table 2.2 was more than 1.7 feet over twelve (12) sites. The mean soil and suitable material thickness of 1.7 feet exceeds the minimum 1-foot average topsoil thickness requirements presented in the approved reclamation plan in Chapter 22 of Permit AZ-0001F.

When the topsoiled reclamation areas (153 acres) are combined with the cultural planting and select mitigative areas (69 acres), the mean thickness of suitable plant growth material is more than 2.7 feet (Table 2.2). This mean thickness of more than 2.7 feet exceeds the average combined topsoil and mitigation material thickness of 1.6 feet as required by the spoil suitability mitigation requirements discussed in the previous section and shown on Map 2.2 In conclusion, PWCC has satisfied topsoil and suitable plant growth material thickness replacement requirements in conformance with applicable regulatory requirements and as stipulated by the approved reclamation plan for the J19 and J21 Phase I release areas shown on Map 1.1.

Table 2.2. Suitable Plant Growth Material Thickness Verification Sites Sampled by PWCC at J19 and J21 During September and December 2022 (See Map 2.1 for Site Locations).

	Easting	Northing	Soil/Mitigation	
Site ID (1)	(feet) (2)	(feet) (2)	Thickness (feet)	Coal Resource Area
1	58474	-47586	1.4	J21
2	60877	-47841	1.0	Ј21
3	60447	-45284	1.4	Ј21
4	60443	-47292	1.1	Ј21
5	60026	-49079	4.0+	J21
6	61704	-46028	1.0	J21
7	60173	-47797	1.5	J21
8	51035	-36260	5.3(4)	J19
9	50763	-35520	4.0 (4)	J19
10	51199	-35949	5.8 ⁽³⁾	J19
11	60412	-48257	7.0+(3)	J21

12	57149	-46536	4.0+	J21
13	56956	-46226	1.1	Ј21
14	64252	-44665	1.6	Ј21
15	59287	-46665	1.0	Ј21
16	57867	-47102	2.5	Ј21
MEAN			1.7+/2.7+(5)	

 $^{^{(1)}}$ For location see Map 2.1. $^{(2)}$ PWCC coordinate system. $^{(3)}$ Cultural planting area. $^{(4)}$ Suitable mitigation material replaced over spoil. $^{(5)}$ Total thickness attributed to topsoil and suitable mitigative material.

POST MINE TOPO EXHIBIT #1 WATERSHED & CHANNEL DESIGNS KAYENTA MINE **J21**

TABLE J21-2022 Channel Design Summary

_			T		T	
			Design		∢	
			Curve	Number	84	
			Time of	Concentration (nr) Number	0.269	
			Rip Rap Watershed	İ	109.8	
			Rip Rap		N/A	
	annel		Total	Doald (it) Deptil (it) (ill)	6 .	
Channel J21-16W.1C	Typical Rip Rap Lined Channel	Designed	Free Board (#)	חום (וו)		
Channel	ical Rip R				2.87	
	цуГ		Depth Velocity	(1) MOL.	9.0	
			Side Slope H·1 /#)	(1)	ო	
			Bottom Side Slope	מאומנו (ווי)	17	
			Slope (%)	(20)	0.70	
			Flow (Q) Slope	(20)	34.63	
		į	Channel	07.70	J21-16W.1C 34.63	

Design Flow: 10-year, 6-hour Storm

J21-16W.1C WATERSHED DESIGN (10YR-6HR)

Kurtis Silversmith

Peabody Western Coal Co. P.O. Box 650 Kayenta, AZ 86033

Filename: J21-16W.1C.sc4 Printed 09-21-2022

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	J21-16W.1C

#1 Null

Filename: J21-16W.1C.sc4 Printed 09-21-2022

Structure Detail:

Structure #1 (Null)

J21-16W.1C

Filename: J21-16W.1C.sc4 Printed 09-21-2022

J21-16W.1C CHANNEL DESIGN

Material: Graded Spoil

Trapezoidal Channel

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Manning's n	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
17.0	0 3.0:1	3.0:1	0.7	0.0300	1.00			5.0

	w/o Freeboard	w/ Freeboard
Design Discharge:	34.63 cfs	
Depth:	0.64 ft	1.64 ft
Top Width:	20.83 ft	26.83 ft
Velocity:	2.87 fps	
X-Section Area:	12.07 sq ft	
Hydraulic Radius:	0.574 ft	
Froude Number:	0.66	

SEDCAD Utility Run Printed 09-21-2022

TABLE J21-2022 Channel Design Summary

			sign	- A
			De	
			Curve Design	<u>8</u>
			Time of Curve Concentration (hr) Number	0.166
			Watershed (acres)	
			Rip Rap (in)	Y X
	ınnel		Depth Velocity Free Total Rip Rap Flow (ft) (fps) Board (ft) Depth (ft) (in)	6.
Channel J21-17W.1C	Typical Rip Rap Lined Channel	Designed	Free Board (ft)	_
Channel	ical Rip R		Velocity (fps)	2.82
	Тур		Depth Velocity Flow (ft) (fps)	8 0
			Bottom Side Slope Width (ft) H:1 (ft)	m
			Bottom Width (ft)	25
			Slope (%)	0.50
			Channel Flow (Q) Slope (cfs) (%)	77.09
			Channel	J21-17W.1C 60.77

Design Flow: 10-year, 6-hour Storm

Convright 1998 -2010 Pamela | Schwah

J21-17W.1C WATERSHED DESIGN (10YR-6HR)

Kurtis Silversmith

Peabody Western Coal Co. P.O. Box 650 Kayenta, AZ 86033

Filename: J21-17W.1C WATERSHED.sc4 Printed 09-21-2022

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	J21-17W.1C

#1 Null

Filename: J21-17W.1C WATERSHED.sc4 Printed 09-21-2022

Structure Detail:

Structure #1 (Null) J21-17W.1C

Filename: J21-17W.1C WATERSHED.sc4

J21-17W.1C CHANNEL DESIGN

Material: Graded Spoil

Trapezoidal Channel

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Manning's n	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
25.00	3.0:1	3.0:1	0.5	0.0300	1,00			5,5

	w/o Freeboard	w/ Freeboard
Design Discharge:	60.77 cfs	
Depth:	0.79 ft	1.79 ft
Top Width:	29.73 ft	35.73 ft
Velocity:	2.82 fps	
X-Section Area:	21.56 sq ft	
Hydraulic Radius:	0.719 ft	
Froude Number:	0.58	

SEDCAD Utility Run

CERTIFICATION

PEABODY WESTERN COAL COMPANY
KAYENTA MINE, J19 AND J21 COAL RESOURCE AREAS, PHASE I BOND RELEASE APPLICATION
NAVAJO COUNTY, ARIZONA

I HEREBY CERTIFY that, to the best of my knowledge and belief, all applicable reclamation activities described in the attached Phase I Bond Release Application for the J19 and J21 Coal Resource Areas dated January 26, 2023 have been accomplished in accordance with the reclamation requirements of the Act, the regulatory program, and the approved reclamation plan contained in the AZ-0001F Permit. The bond release parcel is free from enforcement actions.

Peabody Western Coal Company - Kayenta Mine

B17 •

Randy Lehn

Director Operations Support - Kayenta Mine

STATE OF ARIZONA

NAVAJO COUNTY

Signed or attested before me this 25 day of /January 2023, by Randy Lehn, Director Operations Support of Kayenta Mine owned by Peabody Western Coal Company, a Delaware Corporation, on behalf of said Kayenta Mine.

Notary Public

My commission expires:

ATTACHMENT 2.3a TABLE OF CONTENTS (TOC)

Laboratory Data Used to Evaluate Spoil Suitability and Determine Mitigation Thickness Values for the J19
Coal Resource Area (CRA)

	Sample Site ID as		Year	Mitigation	
Sample Site ID as	Listed on Laboratory	Year	Reported to	Thickness*	Attachment Page for
Shown on Map 2.2	Data Sheet	Sampled	OSMRE	(feet)	Laboratory Data
11	2180 61RG	2012	2013	4	2012-1
2459	2127 58RG	2012	2013	4	2012-1
2460	2126 58RG	2012	2013	4	2012-1
2476	1906 61RG	2012	2013	4	2012-1
2477	1905 61RG	2012	2013	4	2012-1
2478	1904 61RG	2012	2013	4	2012-1
2482	2163 61RG	2012	2013	4	2012-1
2483	2162 61RG	2012	2013	4	2012-1
2484	2161 61RG	2012	2013	4	2012-1
2486	2145 61RG	2012	2013	3	2012-1
2487	2144 61RG	2012	2013	2	2012-1
2488	2143 61RG	2012	2013	4	2012-1
2489	2142 61RG	2012	2013	4	2012-1
2490	2125 61RG	2012	2013	4	2012-1
2735	2108	2014	2015	4	2014-1

^{*} Per the Sampling Results and Redistribution section of the annual reports (2012, 2014), suitable plant growth material (weathered overburden, residual soils, and spoil) was used as subsoil and substratum to bury unsuitable spoil prior to topsoil and suitable soil replacement and for areas requiring erosion resistant material.

ATTACHMENT 2.3b TABLE OF CONTENTS (TOC)

Laboratory Data Used to Evaluate Spoil Suitability and Determine Mitigation Thickness Values for the J21

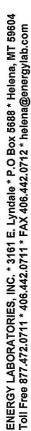
Coal Resource Area (CRA)

Sample Site ID as	Sample Site ID as		Year	Mitigation	
Shown on Map	Listed on Laboratory	Year	Reported to	Thickness**	Attachment Page for
2.2*	Data Sheet	Sampled	OSMRE	(feet)	Laboratory Data
2216	25RG12	2005	2006	1	2005-1
2240	26RG24	2006	2007	1	2006-1
2273	26RG91	2008	2009	1	2008-1
3499	3499	2017	2018	1	2017-1
3508	J21 3508	2017	2018	1	2017-2
3509	3509	2017	2018	1	2017-1
3517	3517	2021	2022	1	2021-3
3518	3518	2021	2022	1	2021-3
3519	J21 3519	2017	2018	1	2017-2
3529*	3529	2021	2022	1	2021-3
3530*	3530	2021	2022	1	2021-3
3531	3531	2021	2022	1	2021-3
3532	J21 3532	2017	2018	1	2017-2
3538*	3538	2021	2022	1	2021-3
3539*	3539	2021	2022	1	2021-3
3540	3540	2021	2022	1	2021-3
3541	3541	2021	2022	1	2021-3
3667*	2209-280-3667	2022	2023	1	2022-5
3668*	2209-280-3668	2022	2023	1	2022-5
3674*	2209-280-3674	2022	2023	1	2022-5
3678*	3678	2022	2023	1	2022-4
3679*	3679	2021	2022	1	2021-3
3680*	3680	2021	2022	2	2021-3
3680a*	3680A	2022	2023	1	2022-7
3680b*	3680B	2022	2023	1	2022-7
3680c*	3680C	2022	2023	1	2022-7
3680d*	3680D	2022	2023 2022	1	2022-7
3681*	3681 3682	2021	2022	•	2021-3
3682* 3682a*	3682A	2021 2022	2022	2	2021-3 2022-7
3682b*	3682B	2022	2023	1	2022-7 2022-7
11	3682C	2022	2023	1	2022-7 2022-7
3682c* 3682d*	3682D	2022	2023	1	2022-7 2022-7
3683*	3683	2022	2023	1	2022-7
3689*	2209-280-3689	2022	2023	1	2022 -4 2022-5
3690*	2209-280-3690	2022	2023	1	2022-5
3691*	2209-280-3691	2022	2023	1	2022-5
3691*	2209-280-3692	2022	2023	1	2022-5 2022-5
3692 3693*	3693	2022	2023	1	2022-5 2021-3
3694*	3694	2021	2022	1	2021-3
3695*	3695	2021	2022	1	2021-3
3695 3696*	3696	2022	2023	2	2022-3 2022-3
3696a*	3696A	2022	2023	1	2022-3 2022-7
11					
3696b*	3696B	2022	2023	1	2022-7

ATTACHMENT 2.3b TABLE OF CONTENTS (TOC)
Laboratory Data Used to Evaluate Spoil Suitability and Determine Mitigation Thickness Values for the J21
Coal Resource Area (CRA)

Sample Site ID as	Sample Site ID as		Year	Mitigation	
Shown on Map	Listed on Laboratory	Year	Reported to	Thickness**	Attachment Page for
2.2*	Data Sheet	Sampled	OSMRE	(feet)	Laboratory Data
3696c*	3696C	2022	2023	1	2022-7
3696d*	3696D	2022	2023	1	2022-7
3697*	3697	2022	2023	1	2022-3
3698*	3698	2021	2022	1	2021-3
3699	3699	2021	2022	1	2021-3
3705	3705	2017	2018	1	2017-1
3706	3706	2017	2018	1	2017-1
3707*	3707	2021	2022	1	2021-3
3713	3713	2021	2022	1	2021-3
3714*	3714	2021	2022	1	2021-3
3715*	3715	2021	2022	1	2021-3
3716*	3716	2022	2023	1	2022-2
3717*	3717	2022	2023	1	2022-3
3718	3718	2022	2023	2	2022-3
3719	3719	2022	2023	1	2022-2
3720	3720	2021	2022	1	2021-3
3728	J21 3728	2017	2018	1	2017-2
3729*	3729	2021	2022	1	2021-3
3735	3735	2021	2022	1	2021-3
3736	3736	2021	2022	1	2021-3
3737*	3737	2021	2022	1	2021-3
3738*	3738	2022	2023	1	2022-2
3739	3739	2022	2023	1	2022-2
3740	3740	2022	2023	1	2022-2
3741	3741	2021	2022	1	2021-3
3752*	3752	2022	2023	2	2022-4
3753	3753	2022	2023	1	2022-4
3754	3754	2021	2022	1	2021-3
3758	3758	2021	2022	1	2021-3
3759	3759	2021	2022	1	2021-3
3760	3760	2022	2023	2	2022-2
3761	3761	2022	2023	1	2022-2
3762	3762	2022	2023	2	2022-2
3763	3763	2021	2022	1	2021-3
3775	J21 Spoil Pit 3775	2021	2022	1	2021-1
3776	J21 Spoil Pit 3776	2021	2022	1	2021-1
3777	J21 Spoil Pit 3777	2021	2022	1	2021-1
3778	J21 Spoil Pit 3778	2021	2022	1	2021-1
3779	J21 Spoil Pit 3779	2021	2022	1	2021-1
3780	3780	2021	2022	3	2021-3
3780a	3780A	2022	2023	1	2022-1
3780b	3780B	2022	2023	1	2022-1
3780d	3780D	2022	2023	1	2022-1
3781	3781	2021	2022	1	2021-3
3782	3782	2021	2022	1	2021-3

ATTACHMENT 2.3b TABLE OF CONTENTS (TOC)


Laboratory Data Used to Evaluate Spoil Suitability and Determine Mitigation Thickness Values for the J21 Coal Resource Area (CRA)

Sample Site ID as	Sample Site ID as		Year	Mitigation	
Shown on Map	Listed on Laboratory	Year	Reported to	Thickness**	Attachment Page for
2.2*	Data Sheet	Sampled	OSMRE	(feet)	Laboratory Data
3783	3783	2022	2023	1	2022-2
3799	J21 Spoil Pit 3799	2021	2022	1	2021-1
3800	J21 Spoil Pit 3800	2021	2022	1	2021-1
3801	J21 Spoil Pit 3801	2021	2022	1	2021-1
3802	J21 Spoil Pit 3802	2021	2022	1	2021-1
3803	J21 Spoil Pit 3803	2021	2022	1	2021-1
3824	J21 Spoil Pit 3824	2021	2022	1	2021-1
3825	J21 Spoil Pit 3825	2021	2022	1	2021-1
3826	J21 Spoil Pit 3826	2021	2022	1	2021-1
3827	J21 Spoil Pit 3827	2021	2022	3	2021-1
3827a	3827a	2021	2022	1	2021-2
3827b	3827b	2021	2022	1	2021-2
3827c	3827c	2021	2022	2	2021-2
3827d	3827d	2021	2022	1	2021-2
3851	J21 Spoil Pit 3851	2021	2022	1	2021-1
3852	J21 Spoil Pit 3852	2021	2022	1	2021-1
3877	J21 Spoil Pit 3877	2021	2022	1	2021-1

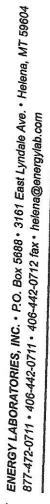
^{*} Sites denoted with an asterisk (*) have not been topsoiled nor has suitable spoil or red rock been applied. ** Per the Sampling Results and Redistribution section of the annual reports (2017, 2021, 2022), suitable plant growth material (weathered overburden, residual soils, and spoil) was used as subsoil and substratum to bury unsuitable spoil prior to topsoil and suitable soil replacement and for areas requiring erosion resistant material.

%CACO3	0.910	1.011	1.011	1.214	0.404	0.505	0.404	3.239	0.100	1.113	0.809	0.707	0.707	0.606	0.707	0.608	0.910	1.011	1.011	608.0	1.113	2.328	1.113		
PYRS A-B TN/1000TN					-2.34	3.05	0.13		0.72		7.78			5.03	5.86	5.31							11.0		
PYR A POT TN/1000TN					6.37	2.00	3.91		0.28		0.31			1.03	1.22	0.75							60.0		
A-B POT TN/1000TN	3.28	4.79	4.36	6.21	-13.3	-7.47	-9.61	29.2	-5.61	5.27	-1.93	1.86	1.06	-1.02	-1.86	-3.23	3.38	3.88	4.44	1.65	0.79	21.3	7.85		
NEUT POT TN/1000TN	9.10	10.1	10.1	12.1	4.04	5.05	4.04	32.4	1.00	11.1	8.09	7.07	7.07	90'9	7.07	90'9	9.10	10.1	10.1	8.09	11.1	23.3	11.1		
ACID POT TN/1000TN	5.82	5.33	5.75	5.93	17.3	12.5	13.6	3.16	6.61	5.86	10.0	5.21	6.02	7.09	8.94	9.29	5.72	6.23	5.67	6.44	10.3	2.01	3.27		
PYR 8%					0.204	0.064	0.125		0.00		0.010			0.033	0.039	0.024							0.003		
TOT 8 %	0.186	0.171	0.184	0.190	0.554	0.401	0.437	0.101	0.212	0.188	0.321	0.167	0.193	0.227	0.286	0.297	0.183	0.199	0.182	0.206	0.331	0.064	0.105		
OLASS	CLC	CL/C	SIS	SCL	_	ರ	ပ	SCL	SCL	ರ	SUC	O	O	O	O	O	ರ	ರ	SCL	ರ	겅	占		ರ	
% CLAY	40.00	40.00	40,00	16,25	20.00	38,75	42.50	27.50	22.50	38.75	40.00	42.50	42.50	42.50	45.00	43.75	37,50	32.50	28.75	32.50	27.50	30.00		37.50	
% SILT	33.75	33.75	32.50	15.00	32.50	27.50	26.25	25.00	25.00	36.25	31.25	30.00	30.00	35.00	35.00	31,25	35.00	27.50	25.00	32.50	30.00	35.00		30.00	
% SAND	26.25	26.25	27.50	68.75	47.50	33.75	31.25	47.50	52.50	25.00	28.75	27.50	27.50	22.50	20.00	25.00	27.50	40.00	46.25	35.00	42.50	35.00		32.50	
SAR	5.55	5.61	4.83	9.22	16.6	5.94	7.76	1.17	1.07	3.03	4.61	5.11	5.10	4.68	4.99	4.83	11.7	13.1	2.05	2.96	1.86	2.56		9.10	
SODIUM	26.9	26.5	23.9	41.8	55.7	28.2	34.7	99'9	6.39	16.7	23.3	25.1	24.7	23.1	24.2	24.6	44.4	50.0	11.4	15.6	9.6	10.3		33.1	
MAGNESIUM MEQAL	25.5	24.1	26.3	21.2	8.0	24.5	20.6	41.9	47.6	38.2	28.5	26.7	25.9	27.2	26.2	29.7	13.7	11.8	36.3	32.7	21.9	16.5		9.71	
CALCIUM	21.6	20.7	22.7	19.9	14.5	20.5	19.4	23.0	24.0	22.4	22.6	21.6	50.9	21.4	20.8	22.0	14.8	17.6	25.0	23.1	31.7	16.0		16.7	
% SAT	47.8	47.8	48.0	47.0	46.7	50.6	55.3	41.2	40.2	43.8	43.6	48.2	47.2	50.2	54.0	50.1	48.2	47.5	42.4	44.6	48.3	42.8		46.3	
ЕС ММНОКМ	5.39	5.32	5.30	6.40	6.61	5.48	5.74	4.87	5.02	5.28	5.29	5.36	5.20	5.25	5.33	5.56	6,13	6.87	5.04	5.01	4.46	3.31		4.77	
PH UNITS	6.67	6.64	6.61	7.08	5.98	5.76	5.76	6.11	4.96	6,49	5.82	90'9	60.9	6.11	6.17	5.92	98'9	7.00	5.90	5.86	5.99	7.17		08'9	
SAMPLE DEPTH	0-1	0-1	1-3	0-1	1. 3	9	1	2	1. 3	9	1. 3	0-1	-0	1	9	က လှ	2	,	7	,	٥ .	1			
SAMPLE DATE	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05	11/29/05			
LOCATION	25RG-10	25RG-10	25RG-10	25RG11	25RG11	25RG12	25RG12	25RG13	25RG13	25RG14	25RG14	25RG15	25RG15	25RG15	25RG16	25RG16	26RG18	26RG18	26RG19	26RG19	26RG20	26RG20			
GAL#	S-4420																						QC-18	QC-26	SCQ-001

%caco3	1.128	1.228	1.328	2.230	3.133	1.529	1.629	1.729	1.428	3.634	4.235	1.128	1.128	1.027	1.829	1.829	1.428	1.228	1.829	4.636	1.729	1.529	1.529	1.428	1.529	1.729	2.832	1.228	1.328	0.827	1.128	1.328	1.128	1.228	1.228	1.228	1.428	1.228	1.328	
PYRS A-B TN/1000TN														2.93																2.58								;	11.16	
PYR A POT TN/1000TN														7.34																5.69								,	2.12	
A-B POT TN/1900TN	7.23	7.80	7.87	16.8	24.0	7.25	10.3	10.3	6.82	26.2	34.4	0.48	0.60	-1.70	11.5	10.6	7.09	4.61	11.2	39.7	10.9	6.33	9.17	7.78	8.33	10.5	23.6	4.07	3.23	-1.61	1.95	6.21	2.57	2.73	2.48	3.18	7.47	3.86	9.00 0.00	
NEUT POT TA/1000TN T	11.3	12.3	13.3	22.3	31.3	15.3	16.3	17.3	14.3	38.3	424	1,3	11,3	10,3	18.3	18.3	14.3	12.3	18.3	48.4	17.3	15.3	15.3	14.3	15.3	17.3	28.3	12.3	13.3	8.27	11.3	13.3	1.3	12.3	12.3	12.3	14.3	12.3	73.3	
ACID POT N	4.05	4.48	5.41	5.51	7.37	8.04	6.03	7.00	7.47	10.1	8.00	10.8	10.7	12.0	6.82	7.66	7.19	7.67	7.05	69.9	6.35	8.95	6.11	6.50	6.95	6.83	4.70	8.20	10.0	9.88	9.33	7.07	8.70	9.55	9.80	9.10	6.81	8.42	3.39	
PYR S% A														0.235																0.182									0.068	
2000	0.130	0.143	0.173	0.177	0.236	0.257	0.193	0.224	0.239	0.324	0.256	0.346	0.342	0.383	0.218	0.245	0.230	0.245	0.226	0.214	0.203	0.287	0.196	0.208	0.223	0.219	0.151	0.263	0.322	0.316	0.299	0.226	0.279	0.306	0.314	0.291	0.218	0.270	0.109	
CLA98 T	CL CL	ರ	SCL	당	ರ	ರ	겁	CL Cl	ರ	ರ	占	겁	占	占	ر ان	ರ	ರ	ರ	5	덩	ಕ	당	占	ರ	ಕ	ರ	겁	ಕ	5 5	겁	ದ	ದ	ದ	7	占	ದ	ಸ	ಕ	,	.
%CLAY 0	32,50															32.50			28.75				33.75			33.75							37.50		32.50	31.25	_	30.00	2	
% SILT %	27.50 3			28.75 3;				27.50 3	28.75 3:						27.50 33								31,25 33								2000	30.00				_	32.50 32	.75 30	70 90	
52	40.00 27					15.69	33.50		-																							10572	20		19.5			25 33.		
																																	2 31.25				35.00	36.	24.05	
JM SAR	1 5.13											7 19.2					1 9.47				5 16.9								4.11			2000	25	15	£	in the second		15.6	. 7.6	
	26.1	24.	18.	42.	35.0	46.	39.6	47.8	50.9	28.6	23.7	55.7	57.8	51.3	47.4	45.7	44.4	57.0	56.1	45.0	70.5	63.5	54.8	53.1	53.5	49.2	41.9	21.1	22.1	46.5	46.1	40.3	50.0	51.8	6'09	54.8	65.2	65.7	76.4	25
MAGNESIUM MEQ/L	31.7	29.2	37.9	14.4	15.9	9.63	8.72	12.3	12.3	28.5	38.7	7.29	7.64	4.26	10.4	10.8	24.8	15.4	9.63	7.35	18.6	16.4	16,0	15.8	14.0	13.2	11.4	33.9	33.9	12.7	19.0	16.7	12.8	27.8	27.6	27.5	15.6	17.9	60	3
CALCIUM	20.0	18.3	20.8	16.2	18.3	12.0	10.9	15.8	15.4	20.1	20.7	9,53	9.93	5.59	13.1	13.5	19.2	15.7	11.5	11,2	16.3	15.8	17.0	17.0	16.3	16.3	15.5	23.1	24.0	16.4	19.1	18.0	16.1	19.3	19.2	19.3	15.2	17.7	70.0	7.7
% SAT	47.4	50.5	45.4	46.5	48.9	46.4	44.8	48.2	47.8	48.1	45.5	51.8	90.0	48.0	47.4	49.8	54.8	52.1	47.3	50.3	45.9	49.6	47.9	50.8	50,4	20.0	49.7	45.8	47.3	52.2	53.9	46.7	53.2	48.2	50.3	45.8	47.2	55.7	4	ġ
ЕС ММНОКМ	5.64	5.30	5.46	5.99	5.50	5.79	5.03	6.28	6.47	5.67	5.87	6.52	6.68	5.58	6.03	5.80	6.93	7.54	6.77	5.08	8.83	8.11	7.37	7.28	7.07	6.62	5.70	5.87	5.98	6.25	6.80	5.96	6.61	7.95	7.90	8.26	8.32	8.67	08 /	5
PH UNITS	7.20	7.19	7.40	7.03	6.78	7.07	7.14	7.08	7.03	6.63	6.67	7.35	7.34	7.18	7.00	7.05	6.29	6.55	69.9	6.79	6.80	6.78	6.90	6,89	6.88	6.94	6.98	5.82	5.96	6.78	99.9	6.73	6.75	6.05	6.04	6.05	6,49	6,42	7 57	200
SAMPLE DEPTH	0-1	5	ب	<u>-</u>	. 5	-	1-3	7-	1. 3	9-1	,	-1	1-0	1-3	0-1	-	9	1. 3	2	ر ا د	0-1	1 3	6-1	<u>-</u>	7	7	1-3	0-1	ا	-0	1. 3	5	7-3	9-1	9	ب	0-1	-3		
SAMPLE DATE	01/12/06	01/12/06	01/12/06	01/12/06	01/12/06	01/12/06	01/12/06	01/12/06	01/12/06	01/12/06	01/12/06	01/12/06	01/12/06	01/12/06	01/12/06	01/12/06	01/12/06	01/12/08	01/12/06	01/12/08	01/12/06	01/12/06	01/13/06	01/13/06	01/13/08	01/13/06	01/13/06	01/13/06	01/13/06	01/13/06	01/13/06	01/13/06	01/13/06	01/13/06	01/13/06	01/13/06	01/12/06	01/12/06		
LOCATION	26RG21	26RG21	26RG21	26RG22	26RG22	26RG23	26RG23	26RG24	26RG24	26RG25	26RG25	26RG26	26RG26	26RG26	26RG27	26RG27	26RG28	26RG28	26RG29	26RG29	26RG30	26RG30	26RG31	26RG31	26RG31	26RG32	26RG32	26RG33	26RG33	26RG34	26RG34	26RG35	26RG35	26RG36	26RG36	26RG36	26RG37	26RG37		
GAL#	S-4440	S-4440R	S-4441	S-4442	S-4443	S-4444	S-4445	S-4446	S-4447	S-4448	S-4449	S-4450	S-4450R	S-4451	S-4452	S-4453		S-4455								S-4462		S-4464	S-4465	S-4466	S-4467	S-4468	S-4469	S-4470	S-4470R	S-4471	S-4472	S-4473	CC-10	SQC-001

LABORATORY ANALYTICAL REPORT

Date Received: 05/06/08


Report Date: 05/16/08

PWCC-Kayenta Mine Kayenta Mine Workorder: Project: Client:

H08050095

Acid Potential Results 1.2 6.9 < 0.01 6.8 8.7 6.1 6.3 1.0 8.9 4.7 5.6 6.3 6.3 4.5 8.8 1.1 Neut Potential Results t/kt 2 13 7 4 5 8 2 8 5 7 2 6 5 4 5 4 5 8 < 0.01 Sulfur, Results < 0.01 Total 0.09 0.18 0.20 0.28 0.04 0.09 0.32 0.14 0.22 0.20 0.05 0.22 0.19 0.05 0.15 0.18 0.19 0.24 < 0.01 0.21 0.28 0.17 90.0 0.18 % 0.07 Texture unitless Results Results Clay % Results Silt % Sand Results 339 24 40 339 339 339 % 38 5 38 36 28 Na-SatPst Results meq/l 35.9 22.9 27.5 28.2 23.4 35.3 25.2 49.0 5.5 37.3 28.9 52.6 15.6 33.8 32.3 33.8 47.9 37.8 18.8 0.99 29.0 59.3 47.1 28.5 38.3 Mg-SatPst Results meq/l 6.53 2.8 4.83 9 8.02 1.86 5.43 2.16 .55 0.55 7.80 12,5 87 11.3 4.97 1.97 12.0 5.90 12.1 5.51 Ca-SatPst Results meq/l 5.06 15.3 1.29 8.22 2.43 7.68 13.9 3.33 13.7 2.12 7.18 0.52 3.10 8.05 2.61 16.7 16.1 15.7 19.7 0.63 7.81 15.4 2.67 unitless Results SAR 4 6 6 13 22 7 19 5 2 5 6 17 8 8 2 5 5 5 mmhos/cm COND Results 5,16 2.99 2.72 4.16 4.65 2.25 5.12 2.97 5,44 5.66 3.48 5.79 4.14 4.40 5.33 5.54 7.26 6.17 2.02 6.61 4.66 pH-SatPst Results 2,1 2.7.2 8.7.2 8.8 8.8 8.8 4.7.7.0.7.4.7.0 6.6 7.7 Analysis Units Client Sample ID 26RG100, 0-1' 26RG100, 1-3' 26RG101, 0-1' 26RG101, 1-3' 26RG102, 0-1' 26RG102, 1-3' 26RG103, 0-1' 26RG103, 1-3' 26RG98, 0-1' 26RG104, 0-1' 26RG104, 1-3' 26RG105, 0-1' 25RG17, 0-1 25RG17, 1-3 25 RG18, 0-1 25RG18, 1-3' 25RG19, 0-1' 25RG19, 1-3' 26RG91, 0-17 26RG91, 1-3' 26RG92, 0-1' 26RG92, 1-3' 26RG93, 0-1' 26RG93, 1-31 26RG94, 0-1' 26RG94, 1-3' 26RG95, 0-1' 26RG95, 1-3' 26RG96, 0-1' 26RG96, 1-31 26RG97, 0-1' 26RG97, 1-3' 26RG98, 1-3' 26RG99, 0-1' 26RG99, 1-3' 26RG105, 1-3' 26RG106, 0-1' 26RG106, 1-3 27RG66, 0-11 H08050095-005 H08050095-006 108050095-008 108050095-010 108050095-012 H08050095-015 H08050095-001 H08050095-002 H08050095-003 H08050095-004 H08050095-007 108050095-009 108050095-011 108050095-013 H08050095-014 H08050095-016 H08050095-018 H08050095-019 H08050095-020 H08050095-030 H08050095-017 H08050095-021 H08050095-022 H08050095-023 H08050095-024 H08050095-025 H08050095-026 H08050095-027 H08050095-028 H08050095-029 H08050095-032 H08050095-033 H08050095-034 H08050095-035 H08050095-036 H08050095-038 H08050095-039 H08050095-040 H08050095-031 H08050095-037 Sample ID

H08050095-041

LABORATORY ANALYTICAL REPORT

PWCC-Kayenta Mine Kayenta Mine H08050095 Workorder: Client: Project:

Report Date: 05/16/08 Date Received: 05/06/08

Sample ID Client Sample ID Units Potent H08050095-001 25RG17,0-1* 0 0 15 H08050095-002 25RG17,1-3* 0 0 17 H08050095-003 25RG18,0-1* 0 0 14 H08050095-004 25RG18,0-1* 0 0 14 H08050095-005 25RG19,1-3* 0 0 14 H08050095-007 26RG91,1-3* 0 0 14 H08050095-017 26RG91,1-3* 0 0 14 H08050095-017 26RG91,1-3* 0 0 14 H08050095-017 26RG93,1-3* 0 0 14 <th>[편] 전:</th> <th>tial Potential</th> <th></th>	[편] 전:	tial Potential	
Sample ID Client Sample ID Up Low H08050095-001 25RG17,0-1* 0 0 H08050095-002 25RG17,1-3* 0 0 H08050095-003 25RG18,0-1* 0 0 H08050095-004 25RG18,0-1* 0 0 H08050095-005 25RG19,1-3* 0 0 H08050095-007 26RG91,0-1* 0 0 H08050095-007 26RG91,0-1* 0 0 H08050095-017 26RG94,0-1* 0 0 H08050095-017 26RG94,0-1* 0 0 H08050095-018 26RG94,0-1* 0 0 H08050095-017 26RG94,0-1* 0 0 H08050095-018 26RG94,0-1* 0 0 H08050095-019 26RG94,0-1* 0 0 H08050095-019 26RG94,1-3* 0 0 H08050095-019 26RG94,1-3* 0 0 H08050095-019 26RG94,1-3* 0 0 H08050095-020 <td< th=""><th>t/lct +/0+</th><th></th><th></th></td<>	t/lct +/0+		
H08050095-001 25RG17,0-1' 0 0 H08050085-002 25RG17,1-3' 0 0 H08050085-003 25 RG18,0-1' 0 0 H08050085-004 25RG18,1-3' 0 0 H08050085-005 25RG19,0-1' 0 0 H08050085-006 25RG91,0-1' 0 0 H08050085-010 26RG91,1-3' 0 0 H08050085-010 26RG91,1-3' 0 0 H08050085-010 26RG93,1-3' 0 0 H08050085-014 26RG93,0-1' 0 0 H08050085-014 26RG94,1-3' 0 0 H08050085-014 26RG94,1-3' 0 0 H08050085-015 26RG94,1-3' 0 0 H08050085-016 26RG95,0-1' 0 0 H08050085-017 26RG94,1-3' 0 0 H08050085-017 26RG94,1-3' 0 0 H08050085-018 26RG95,0-1' 0 0 H08050085-019 26RG97,0-1' 0 0 H08050085-020 26RG98,1-3' 0 0 H08050085-020 26RG99,1-3' 0 0 H08050085-020 26RG91,1-3' 0 0 H08050085-020 26RG91,1-3' 0 0 H08050085-020 26RG91,1-3' 0 0 H08050085-020 26RG10,0-1' 0 0 H08050085-020 26RG104,1-3' 0 0 H08050085-020 26RG104,0-1' 0 0 H08050085-030 26RG104,1-3' 0 0 0 H08050085-030 26RG104,1-3' 0 0 0 H08050085-030 27RG65,1-3' 0 0 0	8	ts Remite	**************************************
H08050085-002 23RG17,1-3* 0 0 1 1 H08050085-003 25 RG18,0-1* 0 0 0 1 1 H08050085-003 25 RG18,0-1* 0 0 0 1 1 H08050085-004 25RG18,0-1* 0 0 0 1 1 H08050085-005 25RG19,1-3* 0 0 0 1 1 H08050085-005 25RG19,1-3* 0 0 0 1 1 H08050085-005 26RG91,1-3* 0 0 0 1 1 H08050085-009 26RG92,1-3* 0 0 0 1 1 H08050085-019 26RG92,1-3* 0 0 0 1 1 H08050085-014 26RG93,1-3* 0 0 0 1 1 H08050085-014 26RG93,1-3* 0 0 0 1 1 1 H08050085-014 26RG93,1-3* 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			13
H08050085-003 25 RG18,0-1* H08050085-004 25RG18,1-3* H08050085-005 25RG19,0-1* H08050085-006 25RG19,1-3* H08050085-007 26RG91,0-1* H08050085-008 26RG92,0-1* H08050085-010 26RG92,1-3* H08050085-011 26RG93,1-3* H08050085-012 26RG93,1-3* H08050085-014 26RG93,1-3* H08050085-014 26RG93,1-3* H08050085-015 26RG93,1-3* H08050085-015 26RG93,0-1* H08050085-016 26RG93,0-1* H08050085-017 26RG93,0-1* H08050085-018 26RG93,0-1* H08050085-019 26RG93,0-1* H08050085-019 26RG93,0-1* H08050085-019 26RG93,0-1* H08050085-019 26RG93,0-1* H08050085-02 26RG93,0-1* H08050085-02 26RG93,0-1* H08050085-02 26RG93,0-1* H08050085-02 26RG93,0-1* H08050085-03 26RG104,0-1* H08050085-03 26RG104,1-3* H08050085-03 000085-03	17 5.6	•	
H08050095-004 25RG18, 1-3' 0 0 H08050095-005 25RG19, 0-1' 0 0 H08050095-005 25RG19, 0-1' 0 0 H08050095-007 26RG91, 0-1' 0 0 H08050095-010 26RG92, 1-3' 0 0 H08050095-010 26RG92, 1-3' 0 0 H08050095-011 26RG93, 1-3' 0 0 H08050095-012 26RG93, 1-3' 0 0 H08050095-013 26RG94, 0-1' 0 0 H08050095-014 26RG94, 0-1' 0 0 H08050095-015 26RG94, 0-1' 0 0 H08050095-015 26RG94, 1-3' 0 0 H08050095-022 26RG94, 1-3' 0 0 H08050095-024 26RG94, 0-1' 0 0 H08050095-025 26RG94, 1-3' 0 0 H08050095-025 26RG100, 0-1' 0 0 H08050095-025 26RG100, 0-1' 0 0 H08050095-025 26RG100, 0-1' 0 0 H08050095-025 26RG104, 0-1' 0 0 0 H08050095-025 26RG104, 0-1' 0 0 0 H08050095-033 26RG104, 0-1' 0 0 0 H08050095-035 26RG105, 0-1' 0 0 0 H08050095-035 26RG105, 0-1' 0 0 0 0 H08050095-035 26RG105, 0-1' 0 0 0 0 0 H08050095-035 26RG105, 0-1' 0 0 0 0 0 0 H08050095-035 26RG105, 0-1' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16 0.30	7 T	
H08050095-005 25RG19, 0-1' 0 0 H08050095-005 25RG19, 1-3' 0 0 0 H08050095-008 25RG19, 1-3' 0 0 0 H08050095-008 26RG91, 1-3' 0 0 0 H08050095-008 26RG92, 0-1' 0 0 0 H08050095-009 26RG92, 1-3' 0 0 0 H08050095-010 26RG92, 1-3' 0 0 0 H08050095-011 26RG93, 1-3' 0 0 0 H08050095-012 26RG93, 1-3' 0 0 0 H08050095-014 26RG93, 1-3' 0 0 0 0 H08050095-014 26RG93, 1-3' 0 0 0 0 H08050095-015 26RG93, 1-3' 0 0 0 0 H08050095-015 26RG93, 1-3' 0 0 0 0 0 H08050095-02 26RG93, 1-3' 0 0 0 0 0 H08050095-02 26RG93, 1-3' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 0.10	2 =	
H08050095-006 H08050095-007 H08050095-007 H08050095-007 H08050095-008 H08050095-009 H08050095-010 H08050095-010 H08050095-010 H08050095-011 H0	14 15	- \$	
H08050095-007 26RG91,0-1' 0 0 H08050085-008 26RG91,1-3' 0 0 H08050085-010 26RG92,0-1' 0 0 H08050085-010 26RG92,0-1' 0 0 H08050085-011 26RG93,0-1' 0 0 H08050085-012 26RG93,1-3' 0 0 H08050095-013 26RG94,1-3' 0 0 H08050095-014 26RG94,1-3' 0 0 H08050095-015 26RG94,1-3' 0 0 H08050095-015 26RG95,0-1' 0 0 H08050095-016 26RG97,1-3' 0 0 H08050095-022 26RG98,1-3' 0 0 H08050095-024 26RG97,1-3' 0 0 H08050095-025 26RG99,1-3' 0 0 H08050095-025 26RG100,0-1' 0 0 H08050095-025 26RG101,0-1' 0 0 H08050095-033 26RG101,0-1' 0 0 0 H08050095-033 26RG101,0-1' 0 0 0 H08050095-034 26RG101,0-1' 0 0 0 H08050095-035 26RG104,0-1' 0 0 0 0 H08050095-035 26RG104,0-1' 0 0 0 0 H08050095-035 26RG104,0-1' 0 0 0 0 0 H08050095-035 26RG104,0-1' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18	วี ก็	
H08050085-008 26RG91,1-3' 0 0 H08050085-009 26RG92,0-1' 0 0 H08050085-010 26RG92,0-1' 0 0 H08050085-011 26RG93,0-1' 0 0 H08050085-012 26RG93,1-3' 0 0 H08050085-013 26RG94,1-3' 0 0 H08050085-014 26RG94,1-3' 0 0 H08050085-015 26RG94,1-3' 0 0 H08050095-015 26RG95,0-1' 0 0 H08050095-019 26RG97,1-3' 0 0 H08050095-022 26RG98,1-3' 0 0 H08050095-024 26RG99,1-3' 0 0 H08050095-025 26RG100,0-1' 0 0 H08050095-025 26RG101,0-1' 0 0 H08050095-025 26RG101,0-1' 0 0 H08050095-033 26RG101,0-1' 0 0 0 H08050095-033 26RG101,0-1' 0 0 0 H08050095-034 26RG101,0-1' 0 0 0 H08050095-035 26RG104,0-1' 0 0 0 0 H08050095-035 26RG104,0-1' 0 0 0 0 H08050095-035 26RG104,0-1' 0 0 0 0 0 H08050095-035 26RG104,0-1' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16 4.2	ם נ	
H08050095-019 26RG92,0-1' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25.0		
H08050095-010 26RG92, 1-3' 0 0 H08050095-011 26RG93, 0-1' 0 0 H08050095-012 26RG93, 1-3' 0 0 H08050095-013 26RG94, 1-3' 0 0 H08050095-014 26RG94, 1-3' 0 0 H08050095-015 26RG94, 1-3' 0 0 H08050095-016 26RG95, 0-1' 0 0 H08050095-017 26RG95, 0-1' 0 0 H08050095-019 26RG97, 1-3' 0 0 H08050095-022 26RG98, 1-3' 0 0 H08050095-024 26RG99, 1-1' 0 0 H08050095-025 26RG100, 0-1' 0 0 H08050095-025 26RG101, 0-1' 0 0 H08050095-025 26RG101, 0-1' 0 0 H08050095-025 26RG101, 0-1' 0 0 H08050095-03 26RG104, 0-1' 0 0 0 H08050095-03 26RG104, 0-1' 0 0 0 H08050095-03 26RG104, 0-1' 0 0 0 0 H08050095-03 26RG104, 0-1' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 0.05	. 22	
H08050095-011 26RG93,0-1' 0 0 1 1 26RG93,0-1' 0 0 0 1 1 26RG93,1-3' 0 0 0 1 1 26RG95,0-1' 0 0 0 1 1 26RG95,0-1' 0 0 0 0 1 26RG95,0-1' 0 0 0 0 1 26RG95,0-1' 0 0 0 0 0 1 26RG95,0-1' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	41 0.8	4 1	
H08050095-012 26RG93,1-3' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 0.3	, a	
13 26RG94,0-1* 14 26RG95,0-1* 15 26RG95,0-1* 16 26RG95,0-1* 17 26RG96,0-1* 18 26RG95,0-1* 19 26RG97,1-3* 10 0 11 26RG98,1-3* 11 26RG98,1-3* 12 26RG99,1-3* 13 26RG99,1-3* 14 26RG99,1-3* 15 26RG100,0-1* 16 26RG100,1-1* 17 26RG101,0-1* 18 26RG101,0-1* 19 26RG103,0-1* 10 0 11 26RG103,0-1* 11 26RG103,0-1* 12 26RG104,0-1* 12 26RG104,0-1* 12 26RG104,0-1* 12 26RG105,0-1* 12 27 27 27 27 27 27 27 27 27 27 27 27 27	2000	Ε;	
14 26RG94,1-3' 0 0 15 26RG95,0-1' 0 0 16 26RG95,0-1' 0 0 18 26RG95,0-1' 0 0 19 26RG97,0-1' 0 0 26RG97,1-3' 0 0 26RG97,1-3' 0 0 26RG99,1-3' 0 0 25RG100,0-1' 0 0 25RG100,0-1' 0 0 25RG101,0-1' 0 0 25RG101,0-1' 0 0 25RG102,0-1' 0 0 25RG103,0-1' 0 0 25RG103,0-1' 0 0 25RG103,0-1' 0 0 25RG104,0-1' 0 0 25RG105,0-1' 0 0 25RG105,0-1' 0 0 25RG105,0-1' 0 0 25RG105,0-1' 0 0 0		Ξ (
15 26RG95, 0-1* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- \$	
16 26RG95, 1-3° 0 0 18 26RG96, 0-1° 0 0 19 26RG97, 0-1° 0 0 26RG97, 1-3° 0 0 26RG97, 1-3° 0 0 26RG98, 1-3° 0 0 25RG99, 1-3° 0 0 25RG100, 0-1° 0 0 25RG100, 1-3° 0 0 25RG101, 0-1° 0 0 25RG102, 0-1° 0 0 25RG103, 0-1° 0 0 25RG104, 0-1° 0 0 25RG105, 0-1° 0 0 25RG105, 0-1° 0 0 25RG105, 0-1° 0 0 25RG105, 1-3° 0 0 25RG105, 1		5 5	
17 26RG96, 0-1' 0 0 0 26RG96, 1-3' 0 0 0 0 26RG97, 0-1' 0 0 0 0 26RG99, 1-3' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2 a	
8 26RG96, 1-3' 0 0 0 26RG97, 0-1' 0 0 0 0 0 0 0 0 0		o \$	
9		2 5	
20 26RG97, 1-3° 0 0 26RG98, 0-1° 0 0 22 26RG98, 0-1° 0 0 4 26RG99, 1-3° 0 0 5 26RG100, 0-1° 0 0 6 26RG100, 1-3° 0 0 7 26RG101, 1-3° 0 0 7 26RG102, 0-1° 0 0 7 26RG103, 0-1° 0 0 7 26RG104, 0-1° 0 0 7 26RG104, 1-3° 0 0 7 26RG104, 1-3° 0 0 7 26RG104, 1-3° 0 0 7 26RG105, 0-1° 0 0 7 26RG105, 1-3° 0 0 7 27RG65, 0-1° 0 0 7 27RG65, 1-3° 0 0		ž <u>†</u>	
2 26RG98,0-1' 0 0 2 26RG98,1-3' 0 0 4 26RG99,1-3' 0 0 5 26RG100,0-1' 0 0 6 26RG100,1-3' 0 0 7 26RG101,0-1' 0 0 8 26RG102,0-1' 0 0 7 26RG103,0-1' 0 0 7 26RG103,0-1' 0 0 7 26RG104,1-3' 0 0 7 26RG104,1-1' 0 0 7 26RG104,1-1' 0 0 7 26RG104,1-1' 0 0 7 26RG105,1-3' 0 0 0 7 27RG65,0-1' 0 0 0 7 27RG65,0-1' 0 0 0 7 27RG65,1-3' 0 0 0 2 7 27RG65,1-3' 0 0 0 0 2 7 27RG65,1-3' 0 0 0 0 2 7 27RG65,1-3' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		<u> </u>	
2 26RG98, 1-3° 0 0 4 26RG99, 0-1° 0 0 5 26RG100, 0-1° 0 0 5 26RG100, 1-3° 0 0 7 26RG101, 1-3° 0 0 7 26RG102, 0-1° 0 0 7 26RG103, 0-1° 0 0 7 26RG103, 0-1° 0 0 7 26RG104, 1-1° 0 0 7 26RG104, 1-1° 0 0 7 26RG104, 1-1° 0 0 7 26RG105, 1-1° 0 0 7 27RG55, 1-1° 0 0		5	
2 26RG99, 0-1' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2 a	
4 26RG99, 1-3' 0 0 5 26RG100, 0-1' 0 0 6 26RG100, 1-3' 0 0 7 26RG101, 0-1' 0 0 8 26RG102, 0-1' 0 0 7 26RG103, 0-1' 0 0 7 26RG103, 0-1' 0 0 7 26RG104, 1-3' 0 0 7 26RG104, 1-1' 0 0 7 26RG105, 1-1' 0 0 7 27RG55, 0-1' 0 0 7 27RG55, 1-1' 0 0 0		,	
5 26RG100, 0-1' 0 0 6 26RG100, 1-3' 0 0 7 26RG101, 0-1' 0 0 8 26RG102, 0-1' 0 0 26RG102, 1-3' 0 0 26RG103, 0-1' 0 0 26RG104, 0-1' 0 0 26RG104, 1-3' 0 0 26RG105, 0-1' 0 0 26RG105, 1-3' 0 0 26RG105, 1-3' 0 0 26RG106, 1-3' 0 0 26RG106, 1-3' 0 0 27RG65, 0-1' 0 0 27RG65, 1-3' 0 0 27RG65, 1-3' 0 0		4 0	
6 26RG100, 1-3' 0 0 0 7 26RG101, 0-1' 0 0 0 0 26RG102, 0-1' 0 0 0 26RG103, 0-1' 0 0 0 26RG103, 0-1' 0 0 0 26RG104, 0-1' 0 0 0 26RG105, 0-1' 0 0 0 26RG105, 0-1' 0 0 0 26RG106, 0-1' 0 0 0 26RG106, 0-1' 0 0 0 27RG65, 0-1' 0 0 27RG65, 0-1' 0 0 27RG65, 1-3' 0 0 0 27RG65, 1-3' 0 0 0 27RG65, 1-3' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1	
26RG105, 1-3' 0 0 0 26RG102, 0-1' 0 0 0 0 26RG102, 0-1' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		19	
26RG105, 1-3' 0 0 0 26RG102, 0-1' 0 0 0 26RG103, 0-1' 0 0 0 26RG103, 0-1' 0 0 0 26RG104, 0-1' 0 0 0 26RG105, 0-1' 0 0 0 26RG106, 0-1' 0 0 0 27RG65, 0-1' 0 0 0 27RG65, 0-1' 0 0 0 27RG65, 1-3' 0 0 0 0 27RG65, 1-3' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9	
26RG105, 1-3' 0 0 0 26RG102, 1-3' 0 0 0 26RG103, 1-3' 0 0 0 26RG104, 0-1' 0 0 26RG105, 0-1' 0 0 26RG105, 0-1' 0 0 26RG105, 1-3' 0 0 0 27RG65, 0-1' 0 0 27RG65, 0-1' 0 0 27RG65, 1-3' 0 0 0 27RG65, 1-3' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		හ	
26RG105, 1-3 0 0 0 26RG103, 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		~	
26RG105, 0-1 26RG104, 1-3' 0 0 26RG104, 1-3' 0 0 26RG105, 0-1' 0 0 26RG106, 0-1' 0 0 26RG106, 1-3' 0 0 27RG65, 0-1' 0 0 27RG65, 1-3' 0 0		17	
26RG104, 0-1' 0 0 26RG104, 1-3' 0 0 26RG105, 0-1' 0 0 26RG105, 1-3' 0 0 26RG106, 0-1' 0 0 27RG65, 0-1' 0 0		7	
26RG104, 1-3' 0 0 26RG105, 0-1' 0 0 26RG105, 0-1' 0 0 26RG106, 0-1' 0 0 26RG106, 1-3' 0 0 27RG65, 0-1' 0 0		89	
26RG105, 0-1' 0 0 26RG105, 1-3' 0 0 26RG106, 0-1' 0 0 26RG106, 1-3' 0 0 27RG65, 0-1' 0 0		9	
26RG105, 1-3* 0 0 26RG106, 0-1* 0 0 26RG106, 1-3* 0 0 27RG65, 0-1* 0 0 27RG65, 1-3* 0 0		<u>ن</u> م	
26RG106, 0-1' 0 0 26RG106, 1-3' 0 0 27RG65, 0-1' 0 0 27RG65, 1-3' 0 0	187	5 6	
26RG106, 1-3' 0 0 27RG65, 0-1' 0 0 27RG65, 1-3' 0 0		ē ţ	
27RG65, 0-1' 0 0 27RG65, 1-3' 0 0		2 ₩	
27RG65, 1-3'		- 5	
		<u>t</u> 6	
FUBUSD0095-041 27RG66, 0-1' 0 0 11	11 9.0	3 0	

ATTACHMENT 2.3b TABLE OF CONTENTS (TOC)

Laboratory Data Used to Evaluate Spoil Suitability and Determine Mitigation Thickness Values for the J21

Coal Resource Area (CRA)

Sample Site ID as	Sample Site ID as		Year	Mitigation	
Shown on Map	Listed on Laboratory	Year	Reported to	Thickness**	Attachment Page for
2.2*	Data Sheet	Sampled	OSMRE	(feet)	Laboratory Data
2216	25RG12	2005	2006	1	2005-1
2240	26RG24	2006	2007	1	2006-1
2273	26RG91	2008	2009	1	2008-1
3499	3499	2017	2018	1	2017-1
3508	J21 3508	2017	2018	1	2017-2
3509	3509	2017	2018	1	2017-1
3517	3517	2021	2022	1	2021-3
3518	3518	2021	2022	1	2021-3
3519	J21 3519	2017	2018	1	2017-2
3529*	3529	2021	2022	1	2021-3
3530*	3530	2021	2022	1	2021-3
3531	3531	2021	2022	1	2021-3
3532	J21 3532	2017	2018	1	2017-2
3538*	3538	2021	2022	1	2021-3
3539*	3539	2021	2022	1	2021-3
3540	3540	2021	2022	1	2021-3
3541	3541	2021	2022	1	2021-3
3667*	2209-280-3667	2022	2023	1	2022-5
3668*	2209-280-3668	2022	2023	1	2022-5
3674*	2209-280-3674	2022	2023	1	2022-5
3678*	3678	2022	2023	1	2022-4
3679*	3679	2021	2022	1	2021-3
3680*	3680	2021	2022	2	2021-3
3680a*	3680A	2022	2023	1	2022-7
3680b*	3680B	2022	2023	1	2022-7
3680c*	3680C	2022	2023	1	2022-7
3680d*	3680D	2022	2023 2022	1	2022-7
3681*	3681 3682	2021	2022	•	2021-3
3682* 3682a*	3682A	2021 2022	2022	2	2021-3 2022-7
3682b*	3682B	2022	2023	1	2022-7 2022-7
11	3682C	2022	2023	1	2022-7 2022-7
3682c* 3682d*	3682D	2022	2023	1	2022-7 2022-7
3683*	3683	2022	2023	1	2022-7
3689*	2209-280-3689	2022	2023	1	2022 -4 2022-5
3690*	2209-280-3690	2022	2023	1	2022-5
3691*	2209-280-3691	2022	2023	1	2022-5
3691*	2209-280-3692	2022	2023	1	2022-5 2022-5
3692 3693*	3693	2022	2023	1	2022-5 2021-3
3694*	3694	2021	2022	1	2021-3
3695*	3695	2021	2022	1	2021-3
3695 3696*	3696	2022	2023	2	2022-3 2022-3
3696a*	3696A	2022	2023	1	2022-3 2022-7
11					
3696b*	3696B	2022	2023	1	2022-7

ATTACHMENT 2.3b TABLE OF CONTENTS (TOC)
Laboratory Data Used to Evaluate Spoil Suitability and Determine Mitigation Thickness Values for the J21
Coal Resource Area (CRA)

Sample Site ID as	Sample Site ID as		Year	Mitigation	
Shown on Map	Listed on Laboratory	Year	Reported to	Thickness**	Attachment Page for
2.2*	Data Sheet	Sampled	OSMRE	(feet)	Laboratory Data
3696c*	3696C	2022	2023	1	2022-7
3696d*	3696D	2022	2023	1	2022-7
3697*	3697	2022	2023	1	2022-3
3698*	3698	2021	2022	1	2021-3
3699	3699	2021	2022	1	2021-3
3705	3705	2017	2018	1	2017-1
3706	3706	2017	2018	1	2017-1
3707*	3707	2021	2022	1	2021-3
3713	3713	2021	2022	1	2021-3
3714*	3714	2021	2022	1	2021-3
3715*	3715	2021	2022	1	2021-3
3716*	3716	2022	2023	1	2022-2
3717*	3717	2022	2023	1	2022-3
3718	3718	2022	2023	2	2022-3
3719	3719	2022	2023	1	2022-2
3720	3720	2021	2022	1	2021-3
3728	J21 3728	2017	2018	1	2017-2
3729*	3729	2021	2022	1	2021-3
3735	3735	2021	2022	1	2021-3
3736	3736	2021	2022	1	2021-3
3737*	3737	2021	2022	1	2021-3
3738*	3738	2022	2023	1	2022-2
3739	3739	2022	2023	1	2022-2
3740	3740	2022	2023	1	2022-2
3741	3741	2021	2022	1	2021-3
3752*	3752	2022	2023	2	2022-4
3753	3753	2022	2023	1	2022-4
3754	3754	2021	2022	1	2021-3
3758	3758	2021	2022	1	2021-3
3759	3759	2021	2022	1	2021-3
3760	3760	2022	2023	2	2022-2
3761	3761	2022	2023	1	2022-2
3762	3762	2022	2023	2	2022-2
3763	3763	2021	2022	1	2021-3
3775	J21 Spoil Pit 3775	2021	2022	1	2021-1
3776	J21 Spoil Pit 3776	2021	2022	1	2021-1
3777	J21 Spoil Pit 3777	2021	2022	1	2021-1
3778	J21 Spoil Pit 3778	2021	2022	1	2021-1
3779	J21 Spoil Pit 3779	2021	2022	1	2021-1
3780	3780	2021	2022	3	2021-3
3780a	3780A	2022	2023	1	2022-1
3780b	3780B	2022	2023	1	2022-1
3780d	3780D	2022	2023	1	2022-1
3781	3781	2021	2022	1	2021-3
3782	3782	2021	2022	1	2021-3

ATTACHMENT 2.3b TABLE OF CONTENTS (TOC)

Laboratory Data Used to Evaluate Spoil Suitability and Determine Mitigation Thickness Values for the J21 Coal Resource Area (CRA)

Sample Site ID as	Sample Site ID as		Year	Mitigation	
Shown on Map	Listed on Laboratory	Year	Reported to	Thickness**	Attachment Page for
2.2*	Data Sheet	Sampled	OSMRE	(feet)	Laboratory Data
3783	3783	2022	2023	1	2022-2
3799	J21 Spoil Pit 3799	2021	2022	1	2021-1
3800	J21 Spoil Pit 3800	2021	2022	1	2021-1
3801	J21 Spoil Pit 3801	2021	2022	1	2021-1
3802	J21 Spoil Pit 3802	2021	2022	1	2021-1
3803	J21 Spoil Pit 3803	2021	2022	1	2021-1
3824	J21 Spoil Pit 3824	2021	2022	1	2021-1
3825	J21 Spoil Pit 3825	2021	2022	1	2021-1
3826	J21 Spoil Pit 3826	2021	2022	1	2021-1
3827	J21 Spoil Pit 3827	2021	2022	3	2021-1
3827a	3827a	2021	2022	1	2021-2
3827b	3827b	2021	2022	1	2021-2
3827c	3827c	2021	2022	2	2021-2
3827d	3827d	2021	2022	1	2021-2
3851	J21 Spoil Pit 3851	2021	2022	1	2021-1
3852	J21 Spoil Pit 3852	2021	2022	1	2021-1
3877	J21 Spoil Pit 3877	2021	2022	1	2021-1

^{*} Sites denoted with an asterisk (*) have not been topsoiled nor has suitable spoil or red rock been applied. ** Per the Sampling Results and Redistribution section of the annual reports (2017, 2021, 2022), suitable plant growth material (weathered overburden, residual soils, and spoil) was used as subsoil and substratum to bury unsuitable spoil prior to topsoil and suitable soil replacement and for areas requiring erosion resistant material.

PYRS A.B				7.37									3.45															-0.82										
PYR A POT				1.53									3.47															0.81										
A-B POT	8.31	5.95	5.08	-0.18	4.49	5.18	12.3	15,1	2.40	13.4	10.3	2.65	-5.48	7.56	9.40	7.22	13.11	5.79	0.03	27.9	25.6	23.6	2.88	4.42	1.04	2.32	26.6	6.22	10.9	22.9	20.1	21.0	18.1	16.2	15.9	3.49	2.53	
NEUT POT TN/1000TN	13.9	11.9	11.9	8,90	9.89	11.9	16.8	18.8	9.89	18.8	15.8	6.92	6.92	12.9	13.9	9.89	15.8	8.90	4.94	28.7	26.7	24.7	3.95	5.93	2.96	3.95	28.7	-0.01	11.9	23.8	20.8	21.8	18.8	17.8	16.8	4.94	3.95	
ACID POT TN/1000TN	5.54	5.92	6.79	90.6	5.40	69.9	4.48	3.68	7.49	5.41	5.55	4.27	12.4	5.30	4.45	2.67	2.72	3,11	4.91	0.84	1.09	1.17	1.07	1.51	1.93	1.63	2.06	6.21	0.99	0.88	0.73	0.77	0.67	1.66	0.88	1.45	1.42	
ORO S%				0.08									0.08															0.11										
PYR S %				0.05									0.11															0.03										
SULFATE 5%				0.17									0.20															0.06										
, s 10T	0.18		0.22					500 .7 0																				0.20				_	_	_	0.03	_		
% CAGOS	1.39	1.19	1.19	0.89	0.99	1.19	1.68	1.88	0.99	1.88	1.58	0.69	0.69	1.29	1.39	0.99	1.58	0.89	0.49	2.87	2.67	2.47	0.40	0.59	0.30	0.40	2.87	<0.010	1.19	2.38	2.08	2.18	1.88	1.78	1.68	0.49	0.40	
GLASS	SL/SCL	ರ	겅	S C	ರ	ರ	ರ	ರ	ರ	ರ	ರ	SCL	SL/SCL	ರ	CL/C	겅	ರ	CLC	SCL	ပ	겅	J S	SCL	SCL	SIC	ပ	O	SCL	SL	ช	ರ	ರ	CL/C	ರ	O	SCL	SCL	
% olay	20.00	35.00	33.75	33.75	35.00	35.00	35.00	32.50	35.00	35.00	36,25	25.00	28.75	37.50	40.00	38.75	38.75	40.00	22.50	46.25	37.50	36.25	23.75	21.25	46.25	48.75	48.75	30.00	17.50	16.25	37.50	38.75	40.00	38.75	48.75	27.50	25.00	
א פורב %	20.00	32.50	26.25	25.00	26.25	23.75	31.25	31.25	30.00	26.25	26.25	22.50	26.25	28.75	25.00	30.00	28.75	32.50	17.50	28.75	23.75	26.25	23.75	18.75	45.00	35.00	33.75	18.75	12.50	12.50	32.50	33.75	32.50	27.50	30.00	20.00	20.00	
% SAND	60.00	32.50	40.00	41.25	38.75	41.25	33.75	36.25	35.00	38.75	37.50	52.50	45.00	33.75	35.00	31.25	32.50	27.50	90.00	25.00	38.75	37.50	52.50	60.00	8.75	16.25	17.50	51.25	70.00	71.25	30.00	27.50	27.50	33.75	21.25	52.50	55.00	
SAR	2.92	3.07	6.08	68.9	8.19	9.70	4.91	3.52	7.92	7.29	7.68	4.71	4.91	16.41	15,15	2.82	3.26	4.44	5.43	2.07	2.66	2.78	1.27	7.	2.49	2.35	2.73	4.41	0.21	0.25	3.20	2.83	2.76	2.08	3.26	1.57	1.44	
SODI	15.3	16.5	29.3	34.5	38.7	50.5	24.0	14.4	39.7	36.3	37.9	26.3	26.3	51.3	44.4	8.31	12.7	14.3	29.9	3.63	4.39	4.92	1.91	3.68	3.48	4.15	9.26	26.8	0.36	0.30	6.09	4.16	4.12	5.44	5.92	2.57	2.98	
MAGNESIUN	31.5	32.7	23.8	27.7	24.1	31.0	29.1	22.9	27.4	24.5	24.9	40.4	36.7	10.5	9.63	7.55	15.6	10.4	37.9	3.38	2.53	2.88	1.79	4.00	1.83	2.96	13.9	50.5	0.84	0.51	4.86	3.18	3.23	6.91	4.99	2.22	3.27	
OALGIUM MEQ/L	23.4	25.2	22.8	22.5	20.6	23.1	18.7	10.6	22.8	25.1	23.8	21.9	20.7	9.03	7.53	9.78	14.5	10.2	22.7	2.80	2.91	3.36	2.71	7.49	2.08	3.27	9.18	23.7	4.82	2.40	2.38	1.16	1.23	6.74	1.59	3.14	5.24	
W % SAT	32.2	41.2	41.7	42.4	45.6	37.7	47.2	46.2	46.1	45.2	40.2	41.8	42.7	47.5	43.7	49.6	53.9	46.6	45.6	62.4	47.6	46.1	37.0	36.2	47.4	49.6	61.2	56.8	35.6	43.0	47.2	46.2	45.0	52.4	61.3	36.6	35.4	
EC MMHOIGM	5.33	5.68	6.133	6.85	6.98	8.57	5.82	4.10	7.45	6.94	7.13	6.92	6.47	6.73	5.95	2.54	3.72	3.37	7.08	1.0	1.06	1.12	0.75	1.59	0.86	1.24	2.84	8,13	0.66	0.33	1.38	0.88	0.87	1.97	1.19	0.89	1.24	
PH UNITS	7.57	7.20	7.26	6.98	7.37	6.99	7.62	7.86	7.19	7.22	7.18	7.39	6.83	7.64	7.44	7.38	7.00	6.87	6.30	7.79	7.59	7.69	7.47	7.37	6.89	6.79	7.68	3.65	7.23	7.39	7.92	7.95	7.96	7.31	8.44	7.37	7.21	
SAMPLE	0-1	ر -	9	ر	9-	<u>ب</u>	-0	1-3	9-	ر -	5	2	1-3	6	1.3	9	4	9	<u>ჯ</u>	5	ر -	ر ا د	5	4	-	ر .	6	ر .	9	5	5	ر ئ	ر	2	ر	2	5	
SAMPLE DATE	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	8/13/21	
LOCATION		Spoil Pit	J21 Spoil Pit 3776	J21 Spoil Pit 3776	J21 Spoil Pit 3777	J21 Spoil Pit 3777	J21 Spoil Pit 3778	J21 Spoil Pit 3778	J21 Spoil Pit 3779	J21 Spoil Pit 3779		J21 Spoil Pit 3799	J21 Spoil Pit 3799	J21 Spoil Pit 3800	J21 Spoil Pit 3800	J21 Spoil Pit 3801	J21 Spoil Pit 3801	J21 Spoil Pit 3802	J21 Spoil Pit 3802	J21 Spoil Pit 3803	J21 Spoil Pit 3803	J21 Spoil Pit 3803	J21 Spoil Pit 3825	J21 Spoil Pit 3825	Spoil	J21 Spoil Pit 3826	Spoil	J21 Spoil Pit 3827	Spoil	Spoil	Spoil	Spoil	Spoil	Spoil		J21 Spoil Pit 3824	J21 Spoil Pit 3824	
OAL#	2108-150-01	2108-150-02	2108-150-03	2108-150-04	2108-150-05	2108-150-06	2108-150-07	2108-150-08	2108-150-09	2108-150-10	2108-150-10R	2108-150-11	2108-150-12	2108-150-13	2108-150-14	O 2108-150-15	2 2108-150-16	2108-150-17	3 2108-150-18		2108-150-20	2108-150-20R	2108-150-21	2108-150-22	2108-150-23	2108-150-24	2108-150-25	2108-150-26	77.09-120-7	2108-150-28	2108-150-29	2108-150-30	2108-150-30R	2108-150-31	2108-150-32	2108-150-33	2108-150-34	

PYRS A-B		7.04			0.00	-0.04						
PYR A POT PYR TRU1000TN TRU1		0.09			0.00	1.06						
A-B POT PYF	0.84	-5.38	4.70	6,46	-52.2	-40.8	3.06	5.10	4.23	3.18		
NEUT POT A-F	4.08	7.14	6.12	10.2	0.00	1.02	5.10	8.16	7.14	9.18		
ACID POT NEU	3.24	12.5	1.41	3.74	52.2	41.9	2.04	3.06	2.91	6.00		
		0.04			50.0	20.0						
ORG S%		00.0			00.0	03						
PYR S%					•	Ī						
SULFATE S%		0.36			1.63							
TOT 8 1/4	0.10	0.40	0.05	0.12	1.67	1.34	0.07	0.10	0.09	0.19		
% CACO3	0.41	0.71	0.61	1.02	0.00	0.10	0.51	0.82	0.71	0.92		
CLASS	SL/SCL	SL	SL/SCL	겅	ပ	O	SCL	ಕ	ರ		SCL	
% CLAY	20.00	16.25	20.00	37.50	41.25	45.00	27.50	36.25	36.25		25.00	
% silt	11.25	8.75	17.50	22.50	36.25	35.00	22.50	26.25	26.25		11.25	
% SAND	68.75	75.00	62.50	40.00	22.50	20.00	50.00	37.50	37.50		63.75	
SAR	2.38	1.57	1.44	2.83	2.35	3.18	1.63	3.15	2.99		11.7	
SODIUM	11.2	8.09	3.07	14.9	11.4	18.4	3.71	12.9	12.0		69.2	
MAGNESIUM	23.2	33.7	3.28	31.5	22.4	45.2	3.22	17.3	16.6		13.4	
CALCIUM MEQ/L	21.1	19.7	5.74	24.0	24.3	21.7	7.19	16.1	15.6		55.9	
% SAT	37.3	39.8	36.1	51.8	49.4	53.1	40.2	48.3	51.5		33.7	
БО ММНОКМ	4.32	4.50	1.25	5.46	4.50	6.26	1.43	4.01	3.95		13.9	
PH UNITS	7.42	6.67	7.57	6.14	5.27	5.98	7.53	7.14	7.05		6.33	
SAMPLE DEPTH	0-1	ر	9	<u>5</u>	-5	1-3	9	1 .3	1-3			
SAMPLE DATE	10/6/21	10/6/21	10/6/21	10/6/21	10/6/21	10/6/21	10/6/21	10/6/21	10/6/21			
LOCATION	3827a	3827a	3827b	3827b	3827c	3827c	3827d	3827d	3827d			
GALF	2110-090-01	2110-090-02	2110-090-03	2110-090-04	2110-090-05	2110-090-06	2110-090-07	2110-090-08	2110-090-08R	QC-29	QC-55	

PYRS A-B TN/1000TN	8.81 3.79	24.57	90	
PYR A POT PY THUSOOTH TH		0.00		
A-B POT PY TR/1000TN TR		2.4.6 2.4.6 2.4.6 2.9.7 2.9.7 2.0.6 2.0.6 2.1.10 2.45	1.28 6.44 6.44 6.44 6.90 6.90 6.90 6.90 6.90 6.90 6.90 9.33 9.39 9.39 9.39 9.25 7.69 9.11 1.26 9.25 9.39 9.39 9.39 9.39 9.39 9.39 9.39 9.3	11.04 11.80 11.76 0.37 26.5 9.67
NEUT POT A TNY500TN TN		30.7 22.0 31.1 11.1 11.1 11.1 11.1 11.1 11.1 11	7.07 10.1 10.1 10.1 12.1 12.1 12.1 12.1 12.1	2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
ACID POT NE	092497942398578150488681883850838508385430	6.69 6.69 6.69 6.69 6.69 6.69 6.69 6.69	6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
A %8 DHO	4 6-1	20.0	000	
PYR 5 % C	2001	00.02	000	
SULFATE 8% P	8 60 0	0.00	4	
TOT 5 % SUI		00000000000000000000000000000000000000	0,000000000000000000000000000000000000	0.06 0.07 0.31 0.18 0.14
% cAGO3	r=00r=00r=============================	200 8 4 4 4 5 8 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.77 0.77 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.09	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50
		25 25 25 25 25 25 25 25 25 25 25 25 25 2	ಪ್ರಜ್ಞ ಕಪ್ಪಕ್ಷಪ್ಪಪ್ಪಪ್ಪಕಪ್ಪಪ್ಪಪ್ಪಕಪ್ಪ ಕಪ್ಪಪ್ಪಪ ಪ್ರಪ್ರಕ್ಷಣೆ ಕಪ್ಪಪ್ಪಪ್ಪಪ್ಪಪ್ಪಪ್ಪಪ್ಪಪ್ಪಪ್ಪಪ್ಪಪ್ಪಪ್ಪಪ್ಪ	55 55 55 55 55 55 55 55 55 55 55 55 55
% SH.T				
% SAND				
SAR	8884448888		140 147.0 14	2.25 2.25 18.9 12.8 4 4 1.9 4
SODIUM MEQ1	51.8 51.8 69.2 6 69.2 6 69.2 6 69.1 3 69.1 3 69.1 8 69.1 8	38.1 9.064 14.4 33.8 33.8 33.8 1.9 1.9 1.9 1.9 1.5 1.3 34.0 34.0	59.6 61.3 70.0 63.5 53.5 53.5 69.0 69.2 69.2 69.2 69.2 69.3 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0	19.8 64.4 44.8 43.4
MAGNESIUM MEQ/L	6330 6330 6330 6330 6330 6330 6330 6330			22.2 32.5 30.5 11.2 11.4
_				
2				
SAMPLE DEPTH			\$	- 0 - 0 - 0 - 0 - 0 0 - 0 - 0
SAMPLE DATE	MARIENTE 1/12227 1/122	2227 2227 2227 2227 2227 2227 2227 222	142221 142221 142221 142221 142221 142221 142221 142221 142221 142221 142221 142221	22/21 22/21 22/21 22/21 22/21 22/21
2			* • • • • • • • • • • • • • • • • • • •	~~~~~
NO.	501			
GAL #	2111-36 211-36 211-36	2111-36 2111-36 2111-36 2111-36 2111-36 2111-36 2111-36 2111-36 2111-36	2111-300-48 2111-300-49 2111-300-51 2111-300-52 2111-300-54 2111-300-56 2111-300-57 2111-300-60 2111-300-60 2111-300-61 2111-300-61 2111-300-61 2111-300-61 2111-300-61 2111-300-61 2111-300-61 2111-300-61 2111-300-62 2111-300-63 2111-300-63 2111-300-63 2111-300-63 2111-300-63 2111-300-63 2111-300-63 2111-300-63 2111-300-63 2111-300-63 2111-300-63 2111-300-68	2111-30 2111-30 2111-30 2111-30 2111-30 2111-30

PYRS A-B TN/1000TN							
PYR A POT TN/1000TN							
A-B POT TN/1000TN	18.7	19.6	4.24	4.40	11.9	9.62	8.65
NEUT POT TN/1000TN	23.8	21.8	12.6	12.6	18.7	16.7	15.6
ACID POT TN/1000TN	5.09	2.19	8.34	8.18	6.81	7.04	7.00
ORG 5%							
PYR S %							
SULFATE S%							
TOTS % SUI	0.16	0.07	0.27	0.26	0.22	0.23	0.22
% CACO3 T	2.38	2.18	1.26	1.26	1.87	1.67	1.56
CLASS	CL	SCL	r S	C C	CF	ದ	ರ
% CLAY	33.75	27.50	37.50	38.75	30.00	33.75	32.50
% SILT	31.25	25.00	32.50	33.75	27.50	33.75	33.75
22							
% SAND	35.0	47.5	30.0	27.5	42.5	32.50	33.7
SAR	5.32	1.29	3.65	3.41	9.98	10.7	11.0
SODIUM	26.8	3.67	21.6	20.1	51.3	53.1	54.4
MAGNESIUM MEQAL	27.9	5.73	49.5	49.3	31.3	31.9	32.0
CALCIUM	22.9	10.4	20.5	20.4	21.6	17.0	16.8
% SAT	52.8	43.7	52.7	52.7	46.2	52.1	52.2
EC MMHO/CM	6.10	1.90	6.60	6.50	8.40	8.30	8.60
PH UNITS	6.05	7.23	90.9	6.15	7.75	7.27	7.27
SAMPLE DEPTH	0-1	ر ا د	9	1-3	9	1 -	1-3
SAMPLE DATE	1/12/22	1/12/22	1/12/22	1/12/22	1/12/22	1/12/22	1/12/22
LOCATION	3780 A	3780 A	3780 B	3780 B	3780 D	3780 D	3780 D
GAL#	2201-116-01	2201-116-02	2201-116-03	C 2201-116-04	2201-116-05	2201-116-06	, 2201-116-06R

PYRS A-B		10.1					11.2	2.74	6.16	1.71	2.43											
PYR A POT PYF		12.9					1.78	0.25	0.84	0.28	0.56											
	23.3	9.56	40.5	18.1	83.0	148	4.84	3.28	2.22	7.35	3.21	3.30	6.36	12.0	29.4	1.73	7.46	10.2	5.49	9.91	13.0	12.9
TO 8-8 POT NT 10/10011/11		•		19.0			- 67 - 122-21	100		1000	70	0020		09477								
T NEUT POT			7																			
ACID POT TVM1000TWT	6.		5.	0.94	Ξ	5.0						4.	5.6	<u>~</u>	0.6	7.	9.6	4.8	5,5	57	2.	.2
ORO S%		0.18							0.11													
A W		0.41					90'0	0.01	0.03	0.01	0.02											
SULFATE 5%		0.35					0.22	0.17	0.16	0.20	0.19											
** e TOT	0.22	0.95	0.08	0.03	0.36	0.08	0.57	0.30	0.30	0.30	0.29	0.15	0.18	0.03	0.02	0.23	0.21	0.16	0.18	0.08	0.07	0.07
% CACO3	3.01	2.31	4.31	1.90	9.43	15.0	1.30	0.30	0.70	0.20	0.30	1.10	1.20	1,30	3.01	1.20	1.40	1.50	1.10	1.90	1,50	1.50
GLASS	SL	Ç	SF	ب	겅	CL/C	ರ	ರ	ರ	SCL	SCL	ರ	ರ	SCL	SCL	겅	占	CL/C	ರ	ರ	Ç	ر ا
% CLAY	15.00	27.50	17.50	23.75	38.75	40.00	36.25	35.00	32.50	22.50	23.75	36.25	36.25	25.00	26.25	37.50	36.25	40.00	33.75	37.50	37.50	38.75
1.118 %	22.50	28.75	30.00	36.25	33.75	33.75	33.75	33.75	30.00	18.75	18.75	31.25	28.75	26.25	50.00	30.00	27.50	35.00	27.50	30.00	32.50	32.50
% SAND				40.00		2020																
	1.42																					
меот коричи	.13	29.0		13.4									55.2									
	8.					ALCON .																
M MAGNESIUM MEGIL	3 12.8			13.6																		
CALCIUM	24.8	24.0	17.8	4.17	23.7	12.6	24.8	24.7	24.7	22.5	23.3	2.80	6.59	5.44	3.17	5.18	7.78	10.0	5.44	11.5	14.2	13.2
M % SAT	35.9	37.0	30.9	30.2	44.9	47.2	43.5	41.9	41.0	36.0	35.9	39.2	38.9	45.4	40.5	52.6	47.1	46.1	43.4	52.8	50.0	49.7
ЕС МИНОІСМ	3.60	6.19	4.64	3.01	5.56	5.03	4.81	4.47	3.11	3.50	3.62	4.79	6.45	0.63	0.39	5.54	6.62	5.58	5.32	1.74	2.14	2.05
PH UNITS	7.69	7.10	7.87	8.02	7.38	8.21	6.51	5.57	6.20	4.80	4.84	7.99	7.47	7.31	7.53	7.49	7.59	7.63	7.71	6.61	6.61	69'9
SAMPLE	0-1	1-3	٥- 1-	1. 3	<u>-</u>	٢	7-	~	٩-	ر ښ	ر د	-	7	-	1-3	0-1	ر -	9-1	5.	9	ر ا	1-3
SAMPLE DATE	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22	2/14/22
LOCATION	3716	3716	3719	3719	3738	3738	3739	3739	3740	3740	3740	3760	3760	3761	3761	3762	3762	3783	3783	3784	3784	3784
e ve	2202-172-01	2202-172-02	2202-172-03	2202-172-04	2202-172-05	2202-172-06	2202-172-07	2202-172-08	2202-172-09		N		2202-172-12	2202-172-13	2202-172-14	2202-172-15	2202-172-16	2202-172-17	2202-172-18	2202-172-19	2202-172-20	2202-172-20R

q Z	I	į	5.64						
PYRS A-B TN/1000TN			~						
PYR A POT TN/1000TN			1.3/						
A-B POT TW/1000TN	5.27	3.90							
NEUT POT TN/1000TN	10.01	13.0	0.07	16.0	20.0	15.0	10.0	12.0	11.0
ACID POT TN/1000TN	4.75	9.12	10.3	8.77	7.22	8.65	7.53	5.26	5.12
ORG S%			0.10						
PYR S %		č	40.0						
ULFATE S%		9	0.13						
1018% 8	0.15	0.29	0.33	0.28	0.23	0.28	0.24	0.17	0.16
% cAGO3	1.00	1.30	1.40	1.60	2.00	1,50	1.00	1.20	1.10
CLASS	OF COL	ರ	ಕ ಕ	ರ	겅	ರ	CL/C	겅	ರ
% CLAY	35.00	36.25	36.25	33.75	37.50	37.50	40.00	37.50	37.50
% SILT	33.75	27.50	30.00	26.25	28.75	26.25	27.50	30.00	27.50
% SAND	31.25	36.25	33.75	40.00	33.75	36.25	32.50	32.50	35.00
SAR	25.3	14.2	13.7	16.4	18.2	16.0	10.4	10.9	10.6
SODIUM	62.6	61.8	62.2	65.2	62.6	62.2	54.4	48.7	47.4
MAGNESIUM MEQ/L	5.10	17.8	19.0	13.5	11.2	14.2	34.0	23.9	23.9
CALCIUM	7.19	20.0	22.0	18.2	12.6	15.9	21.1	15,9	16.4
% SAT	42.0	46.1	47.6	43.6	46.8	48.5	9.75	51.7	52.1
EC MMHOICM	6.66	7.97	8.23	7.92	7.37	7.64	8.37	7.17	7.13
PH UNITS	7.66	6.92	7.20	7.43	7.67	7.29	7.68	7.73	7.68
SAMPLE DEPTH	1-0-1	3.	0 1-0	5	5	5	9	ب	1. 3
SAMPLE DATE	3/7/22	3/7/22	3/7/22	3/7/22	3/7/22	3/7/22	3/7/22	3/7/22	3/7/22
LOCATION	3718	3717	3697	3697	3696	3696	3692	3692	3692
# GAL#	2203084-01	2203084-03	2203084-04	2203084-06	2203084-07	2203084-08	Z 2203084-09	§ 2203084-10	\$ 2203084-10R

PYRS A-B TN/1000TN								-2.65	-2.86			
PYR A POT TN/1000TN								4.97	4.19			
A-B POT TN/1000TN	2.84	2.86	8.53	5.61	5.75	3.42	5.26	-14.1	-13.9			
NEUT POT TN/1000TN	10.3	11.2	16.2	9.26	9.26	7.28	8.27	2.32	1.32			
ACID POT TW1000TN	7.41	8.38	7.68	3.66	3.51	3.86	3.01	16.4	15.2			
ORG S%								0.22	0.17			
PYR S %								0.16	0.13			
SULFATE S%								0.15	0.18			
**************************************	0.24	0.27	0.25	0.12	0.11	0.12	0.10	0.53	0.49			
% cAGO3	1.03	1.12	1.62	0.93	0.93	0.73	0.83	0.23	0.13			
CLASS	C.	ರ	ರ	SCL	SCL	ರ	占	ರ	ပ			
% CLAY	33.75	36.25	36.25	27.50	25.00	37.50	37.50	37.50	41.25			
% SILT	26.25	26.25	27.50	25.00	22.50	27.50	25.00	31.25	36.25			
% SAND	40.00	37,50	36,25	47.50	52,50	35.00	37.50	31.25	22.50			
SAR	13.8	13.9	15.4	18.5	18.1	4.33	3.76	15.6	16.7			
SODIUM	57.9	6.09	55.7	77.4	81.3	16.8	13.5	67.4	64.8			
MAGNESIUM	17.1	18.4	13.3	21.6	25.1	14.5	12.6	17.7	12.4			
CALCIUM	18.0	19.9	13.0	13,4	15.4	15.8	13.3	19.5	17.7			
% SAT	47.6	46.4	46.2	40.0	38.5	52.0	54.1	46.7	61.4			
ЕС ММНОІСМ	79'7	7.82	7.15	9.39	10.0	3.97	3.49	8.68	8.24			
PH UNITS	7.25	7.25	7.4.1	7.84	7.80	7.50	7.50	2.67	2.57			
SAMPLE DEPTH	0-1	-1	<u>ب</u>	<u>-</u>	(,	-0	-1 -3	2	ا ئ			
SAMPLE DATE	4/7/22	4/7/22	4/7/22	4/7/22	4/7/22	4/7/22	4/7/22	4/7/22	4/7/22			
LOCATION	3683	3683	3683	3678	3678	3753	3753	3752	3752			
GAL#	2204099-01	2204099-01R	2204099-02	2204099-03	2204099-04	C 2204099-05	2204099-06	X 2204099-07	1 2204099-08	4		

Billings, MT 800.735.4489 . Casper, WY 888.235.0515 . Gillette, WY 866.686.7175 . Helena, MT 877.472.0711

Trust our People. Trust our Data.

LABORATORY ANALYTICAL REPORT Prepared by Helena, MT Branch

Peabody Western Coal Co. Kayenta Mine

Client:

Report Date: 11/09/22 Date Received: 10/24/22

Cilent: Project:	Peabody Western Coal Co. Kayenta Mine	iri coal co. Ki Spoils	ayenta Mine								Rep Dafe R	Report Date: 11/09/22 Date Received: 10/24/22	11/09/22
Workorder:	H22100693												J 1
	=	Analysis	Sand	蒙	Clay	Texture	Percent Sat	pH-SatPst	Cond- SatPst	Ca-SatPst- Sat Paste	Mg-SatPst- Sat Paste	Na-SatPst- Sat Paste	SAR
		Units	%	%	%		%	n's	mmhos/cm	T/beu	med/L	med/L	unitless
Sample ID	Cilent Sample ID	Up Low	w Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
H22100693-001	2209-280-3668	0	4	30	30	ರ	57.5	7.7	4.7	10.3	10.0	42.7	13.4
H22100693-002	2209-280-3668	د	34	36	30	겅	53.1	7.6	5.4	13.5	12.3	52.0	14.5
H22100693-003	2209-280-3667	0	38	32	30	ಕ	56.7	7.7	3.4	6.39	6.35	32.0	12.7
H22100693-004	2209-280-3667	1 3	42	30	28	ರ	52.5	7.4	4.8	12.5	10.1	42.8	12.8
H22100693-005	2209-280-3666	0	30	38	32	ರ	59.1	7.0	6.2	15.3	12.3	61.4	16.6
H22100693-006	2209-280-3866	ر ع	34	36	30	ರ	49.5	5.7	8.0	18.2	21.4	77.8	17.5
H22100693-007	2209-280-3677	0	36	48	16	_	40.8	8.8	4.4	16.4	19.3	27.7	6,6
H22100693-008	2209-280-3677	<u>-</u> ھ	20	30	20	_	42.6	7.0	4.5	14.1	17.0	33.8	8,6
H22100693-009	2209-280-3692	0	48	32	20	ب	42.6	7.5	5.8	18.2	20.3	49.1	11.2
H22100693-010	2209-280-3692	د	52	28	20	_	40.7	7.6	4.7	11.8	13.2	41.1	11.6
H22100693-011	2209-280-3691	0	48	30	22	٦	46.2	7.4	4. ئ	16.1	18.4	32.8	7.9
J H22100693-012	2209-280-3691	د ه	20	28	22	_1	48.0	7.4	8.4	17.5	19.1	35.9	8.4
J H22100693-013	2209-280-3690	0	48	30	22	ب	47.0	7.4	6.4	16.6	17.0	38.1	6.0
3 H22100693-014	2209-280-3690	1 ع	20	30	20	Ų	47.6	7.3	9.4	13.9	16.1	35.8	9.2
N H22100693-015	2209-280-3689	0	44	30	26	_	51.5	7.4	5.5	17.5	15.2	45.0	11.1
H22100693-016	2209-280-3689	-3	42	32	26	_	51.5	7.4	5.6	18.4	15.6	47.5	11.5
H22100693-017	2209-280-3674	0	52	28	20	_1	41.8	7.3	6.4	19.1	21.3	24.0	5.4
H22100693-018	2209-280-3674	د د	48	30	22	_	45.6	7.5	4.4	18.5	19.8	28.3	6.5
H22100693-019	2209-279-4794	0	34	38	28	ರ	50.8	3.5	2.0	18.2	107	1.76	0.2
H22100693-020	2209-279-4794	1 ع	34	40	26	J	44.8	3,5	6.4	18.4	92.3	1.14	0.2
H22100893-021	2209-279-4842	0	32	38	30	ដ	47.1	3.2	9.3	15.5	139	3.70	4.0
H22100693-022	2209-279-4842	1	32	40	28	ರ	46.3	3.2	12.1	17.9	222	6.27	9.0
H22100693-023	2209-279-4841	0	40	34	26	_1	40.3	6.9	5.8	18.9	70.2	14.6	2.2
H22100693-024	2209-279-4841	ر ھ	40	34	28	_	43.2	5.9	7.4	18.2	94.2	25.6	3.4
H22100693-025	2209-279-4840	0	98	ω	9	S	31.0	7.7	5	8.96	8.88	1.60	0.5
H22100693-026	2209-279-4840	1 ه	88	9	စ	S	30.3	7.7	9.	10.9	8.52	2.28	0.7
H22100693-027	2209-279-4819	0	44	32	24	Ţ	41.8	3.9	4. ن	19.7	55.6	0.78	1.0
H22100693-028	2209-279-4819	د ه	82	œ	6	rs	63.6	2.7	3.8	20.5	22.9	0.82	0.2
H22100693-029	2209-279-4820	0	38	34	28	ರ	42.2	4.9	8.1	15.7	141	1.98	0.2
H22100693-030	2209-279-4820	<i>د</i>	44	32	24	ب	42.8	5.8	6.5	18.9	102	3.51	4.0
H22100693-031	2209-279-4767	0	40	34	26	_	45.1	4.0	6.0	18.5	69.8	13.3	2.0
H22100693-032	2209-279-4787	٦ م	38	34	28	ರ	45.2	5.2	6.6	19.3	73.6	21.5	3.2
H22100693-033	2209-279-4768	0	38	36	28	_	42.0	4.1	9.2	17.6	121	27.2	9.9 8.0
H22100693-034	2209-279-4768	ر ه	36	38	26	ب	44.0	4.0	6.6	18.9	130	34.1	3.9
H22100693-035	2209-279-4772	0	34	40	26	٦	41.9	6.1	6.1	19.2	52.8	29.0	8.4
H22100693-036	2209-279-4772	د ه	38	36	26	ب	45.9	6.2	7.1	17.7	73.4	30.8	4.6
H22100693-037	2209-279-4795	0	46	32	22		38.1	4.2	12.9	18.9	223	36.5	3.3
H22100693-038	2209-279-4795	د	44	32	24	٦	41.1	3.7	10.5	18.7	174	18.3	1.9

Billings, MT 800.735.4489 . Casper, WY 888.235.0515 . Gillette, WY 866.686.7175 . Helena, MT 877.472.0711

Trust our People. Trust our Data.

LABORATORY ANALYTICAL REPORT Prepared by Helena, MT Branch

					I	chaled by	repared by neigna, wil branch						
Client:	Peabody Western Coal Co. Kayenta Mine	ern Coal C	o. Kayer	nta Mine								Report Date: 11/09/22	
Project:	J21 Spoils N9 Spoils	Spoils										Date Received: 10/24/22	
Workorder:	H22100693												
		Analysis	8	Neut Potential	Acid Potential	Acid/Base Potential	AP, Pyritic S	ABP, Pyritic S	Sulfur, Total	Sulfur, Sulfate	Sulfur, Pyritic	Sulfur, Organic	
		Units		tkt	1Kt	t/kt	Vkt	t/kt	%	%	%	%	
Sample ID	Client Sample ID	dn	Low	Results	Results	Results	Results	Results	Results	Results	Results	Results	8
H22100693-001	2209-280-3668	0	-	22	4.3	18			0.14				
H22100693-002	2209-280-3668	-	ო	18	6.6	12			0.21				
H22100693-003	2209-280-3667	0	Ψ-	24	3.6	72			0.11				
H22100693-004	2209-280-3667	-	ო	22	5.2	17			0.17				
H22100693-005	2209-280-3666	0	-	19	9.2	6			0.31				
H22100693-008	2209-280-3666	-	ღ	6	23	-15	4.8	0	0.75	0.32	0.27	0.16	
H22100693-007	2209-280-3677	0	•	13	3.2	6			0.10				
H22100693-008	2209-280-3677	-	က	41	2.4	7			90.0				
H22100693-009	2209-280-3692	0	-	7	2.9	6			0.09				
H22100693-010	2209-280-3692	-	က	=	2.1	O			0.07				
H22100693-011	2209-280-3691	0	,	13	2.5	7			0.08				
H22100693-012	2209-280-3691	~ -	ო	12	2.9	6			0.09				
N H22100693-013	2209-280-3690	0	-	=	3.0	80			0.10				
1 H22100693-014	2209-280-3690	~	က	10	3.8	ဖ			0.12				
H22100693-015	2209-280-3689	0	-	5	4.5	ထ			0.14				
H22100693-016	2209-280-3689	_	က	4	5.8	œ			0.19				
H22100693-017	2209-280-3674	0	-	12	3.0	60			0.10				
H22100693-018	2209-280-3674	-	ო	16	4.1	12			0.13				
H22100693-019	2209-279-4794	0	•	0	29	-29	7.7	ထု	0.93	0.50	0.25	0.19	
H22100693-020	2209-279-4794	-	ဗ	o	33	-33	9.2	o.	1.05	0.54	0.29	0.22	
H22100693-021	2209-279-4842	0	-	7	54	-54	4	-14	1.73	1.07	0.44	0.23	
H22100693-022	2209-279-4842	-	ဗ	Ģ	52	-52	13	-13	1.66	1.01	0.43	0.22	
H22100693-023	2209-279-4841	0	-	~	35	-27	15	ထု	1,11	0.47	0.49	0.14	
H22100693-024	2209-279-4841	_	ဗ	80	44	-36	16	ထု	1.41	0.76	0.51	0.14	
H22100693-025	2209-279-4840	0	-	ო	0.59	က			0.02				
H22100693-026	2209-279-4840	•	ဗ	4	0.71	က			0.02				
H22100693-027	2209-279-4819	0	-	7	26	-24	8.5	φ	0.85	0.33	0.27	0.24	
H22100693-028	2209-279-4819	τ	ო	0	42	-42	=	-11	1.35	0.37	0.35	0.63	
H22100693-029	2209-279-4820	0	-	9	51	-44	21	-15	1.62	0.74	0.69	0.20	
H22100693-030	2209-279-4820	~	ო	4	14	-28	16	7	1.32	99.0	0.50	0.16	
H22100693-031	2209-279-4767	0	-	2	35	-32	12	o ₋	1.11	0.54	0.38	0.19	
H22100693-032	2209-279-4767	-	က	ъ	34	-29	12	-2	1.10	0.52	0.39	0.19	
H22100693-033	2209-279-4768	0	,- -	7	43	4	18	-16	1.38	0.63	0.57	0.18	
H22100693-034	2209-279-4768	-	ო	7	14	66-	4	-12	1.30	0.64	0.44	0.22	
H22100693-035	2209-279-4772	0	.	12	32	-20	17	4	1.03	0.34	0.53	0.15	
H22100693-036	2209-279-4772	-	ო	13	30	-25	17	4	1.24	0.56	0.55	0.14	
H22100693-037	2209-279-4795	0	_	7	55	-53	23	-21	1.75	0.74	0.75	0.25	
H22100693-038	2209-279-4795	-	က	0	46	-45	4	-13	1.46	0.79	0.44	0.23	

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

Trust our People. Trust our Data.

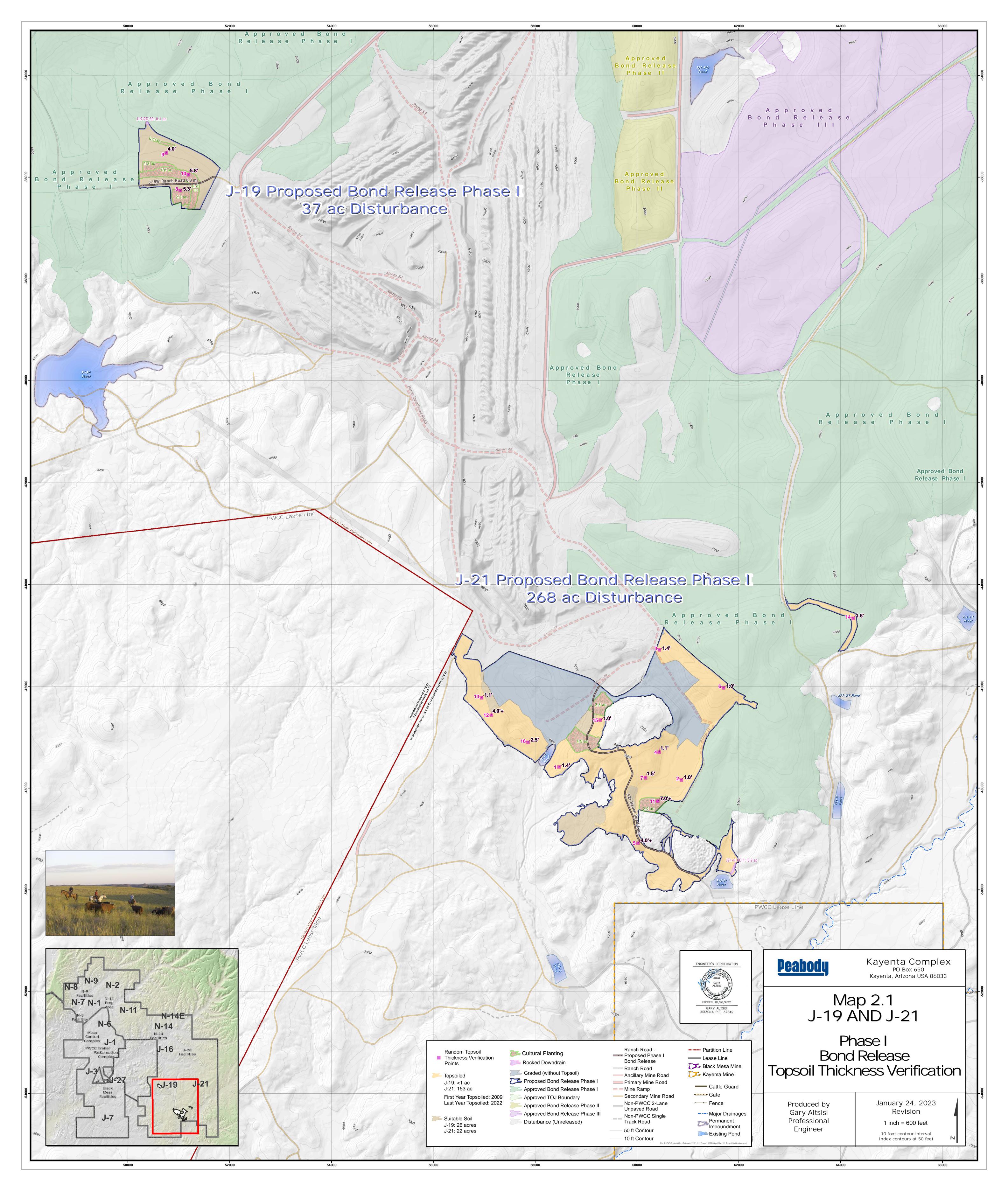
LABORATORY ANALYTICAL REPORT Prepared by Helena, MT Branch

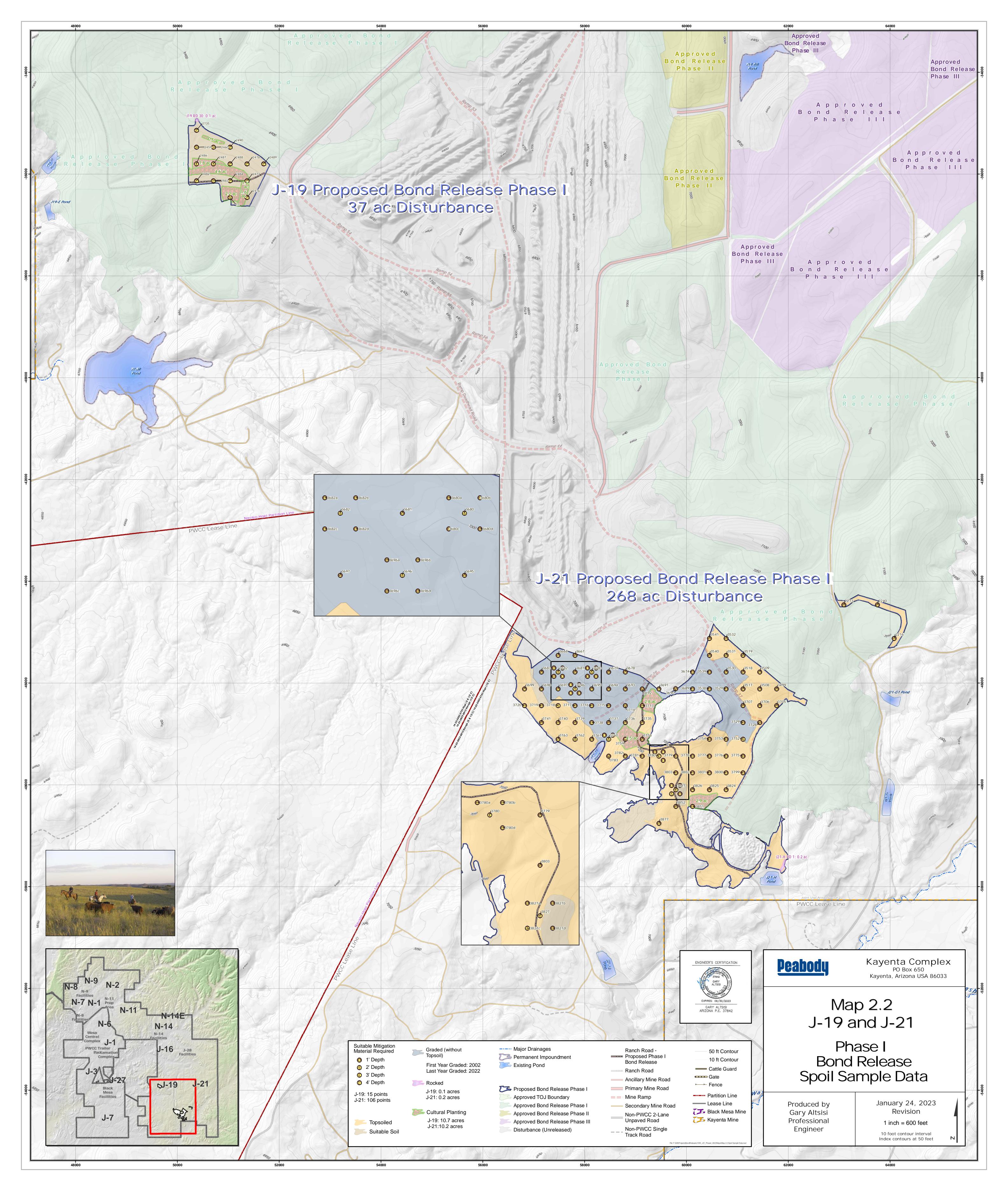
Revised Date: 01/04/23

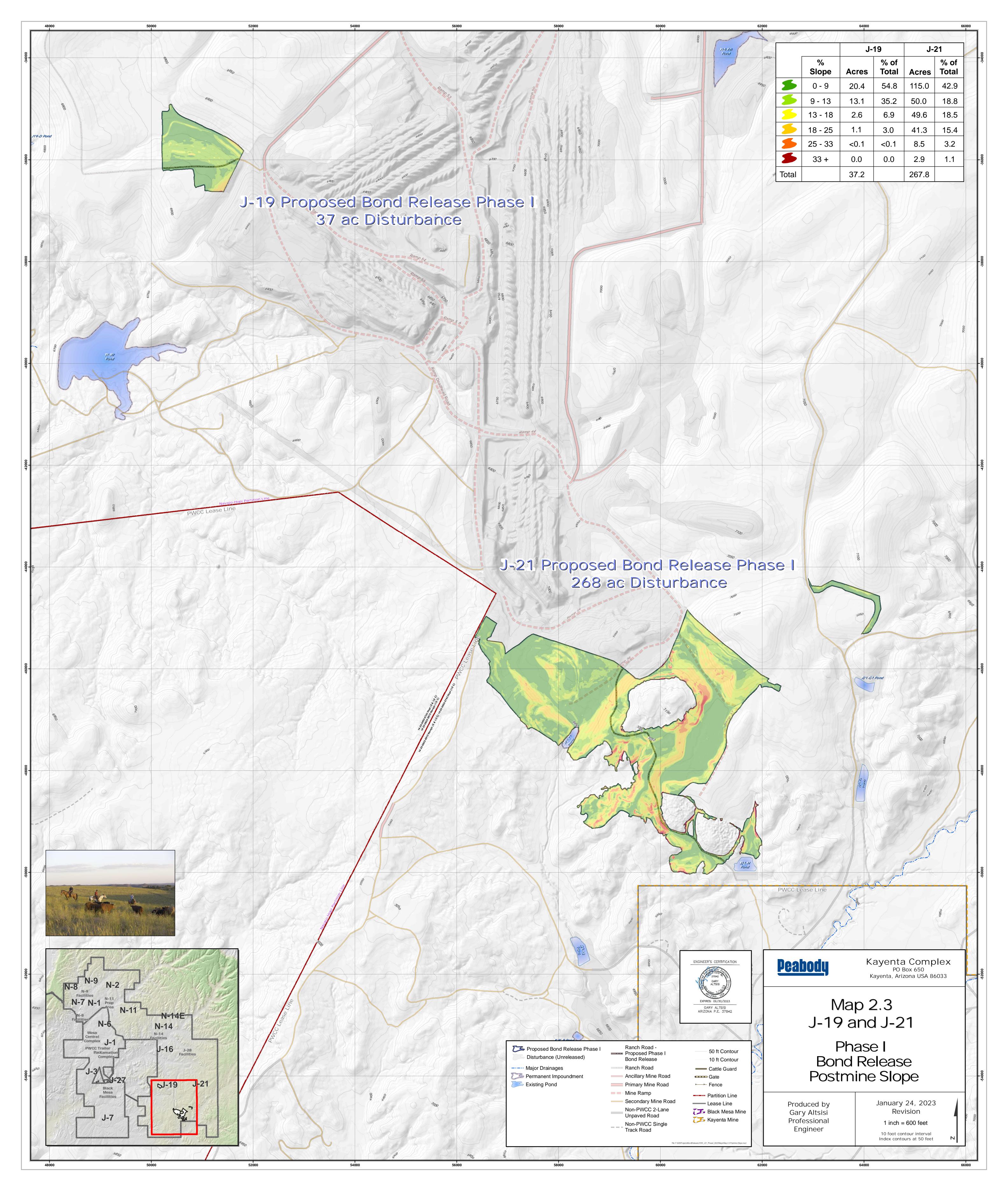
						15000	5						1
Cllent:	Peabody West	Peabody Western Coal Co. Kayenta Mine	yenta Mine								Repo	Report Date: 12/	12/31/22
Project:	J21 Spoils										Date Re	Date Received: 12/	12/09/22
Workorder:	H22120265				12								
		Analysis	Sand	SE SE	Clay	Texture	Percent Sat	pH-SatPst	Cond- SatPst	Ca-SatPst- Sat Paste	Mg-SatPst- Sat Paste	Na-SatPst- Sat Paste	SAR
		Units	%	%	%		%	ากร	mmhos/cm	med/L	T/bem	med/L	unitless
Sample ID	Client Sample ID	Up Low	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
H22120265-001	3682 A	0	8	39	27	ರ	52.1	7.4	5.5	16.0	13.2	42.4	11.1
H22120265-002	3682 A	<u>-</u>	30	4	30	ರ	54.1	7.5	4.8	12.8	10.9	37.8	11.0
H22120265-003	3682 B	0	32	4	28	ರ	51.4	7.4	5.6	15.9	13.6	43.9	11.4
H22120265-004	3682 B	1 3	40	35	25	_	49.4	7.8	4.	7.49	9.55	33.4	11.4
H22120265-005	3682 C	0	34	38	28	ರ	50.0	7.4	8.9	18.0	15.0	46.6	11.5
H22120265-008	3682 C	د ه	34	42	24	_	46.2	6.7	7.0	21.5	16.6	58.9	13.5
H22120265-007	3682 D	0	30	42	28	ರ	50.6	7.4	6.8	19.4	16.2	56.5	13.4
H22120265-008	3682 D	د	32	39	29	ರ	49.2	7.2	5.3	13.9	12.9	42.7	11.6
H22120265-009	3680 A	0	36	39	25	_1	46.8	4.7	5.9	10.4	8.55	56.2	18.3
H22120265-010	3680 A	1 3	38	37	25	ب	44.7	7.3	6.8	17.6	13.6	63.4	16.0
W22120265-011	3680 B	0	28	43	59	ರ	52.8	7.2	8.0	20.3	16.5	75.2	17.5
A H22120285-012	3680 B	ر س	30	42	28	ರ	47.9	7.5	6.8	15.2	15.9	58.6	14.8
N H22120265-013	3680 C	0	32	39	29	ರ	52.8	7.7	6.0	8.93	9.23	55.8	18.5
H22120265-014	3680 C	1 ع	32	40	28	ರ	47.9	7.7	5.6	6.18	6.49	56.0	22.3
J H22120265-015	3680 D	0	24	46	30	ರ	51.2	7.5	5.3	6.68	6.08	51.9	20.6
H22120265-016	3680 D	1 3	28	44	28	ರ	43.0	7,4	5.8	8.33	7.36	57.7	20.6
H22120265-017	3696 A	0	36	38	26	_	60.0	7.3	7.2	16.7	11.7	629	17.5
H22120265-018	3696 A	ر د	48	30	22	_	43.8	7.6	8.4	4.73	3.17	49.5	24.9
H22120265-019	3696 B	0	30	38	32	ರ	56.8	7.7	5.2	13.3	17.3	41.3	10.5
H22120265-020	3696 B	ر ع	28	40	32	d	62.6	9.7	6.0	17.1	27.0	30.1	6.4
H22120265-021	3696 C	0	34	38	28	ರ	52.4	5.6	4.4	19.4	30.1	19.4	3.9
H22120265-022	3696 C	1 3	34	14	25	_	54.4	5.4	4.0	19.4	31.1	13.0	2.6
H22120265-023	3696 D	0	32	37	31	ರ	67.9	7.3	6.3	15.5	12.3	59.4	15.9
H22120265-024	3696 D	4	34	39	27	ರ	47.3	7.4	6.4	10.5	9.19	51.3	16.3
H22120265-025	3760 A	0	36	37	27	ರ	47.6	7.2	4.1	19.7	15.9	22.0	5.2
H22120265-026	3760 A	1 3	38	37	25	_	47.3	7.2	4.8	18.4	19.4	30.5	7.0
H22120265-027	3760 B	0	42	37	72	۔	42.4	7.4	3.8	18.1	23.2	15.6	3.4
H22120265-028	3760 B	1 3	44	35	22	_	45.7	7.5	3.5	13.0	17.7	18.2	4.7

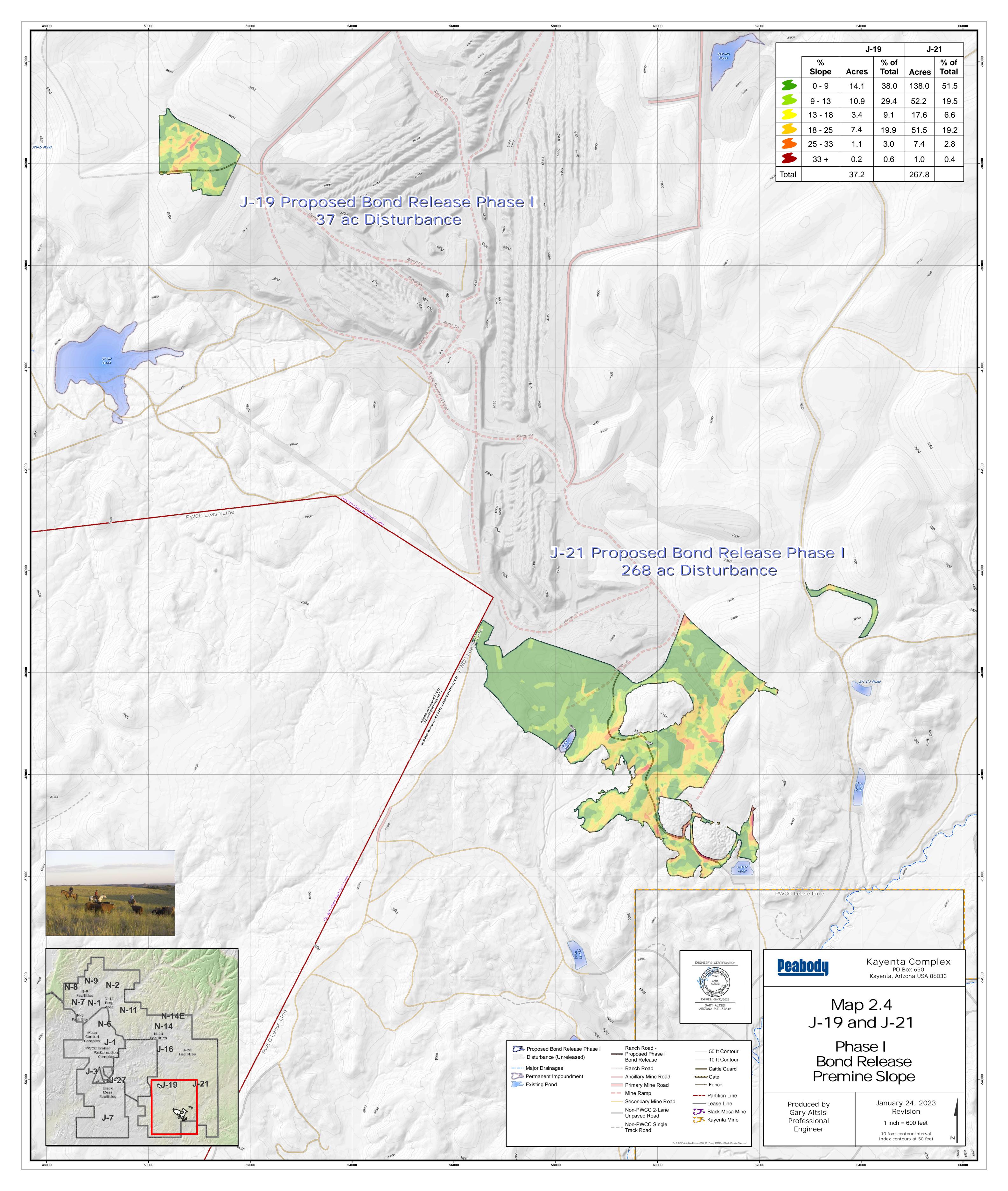
LABORATORY ANALYTICAL REPORT Prepared by Helena, MT Branch

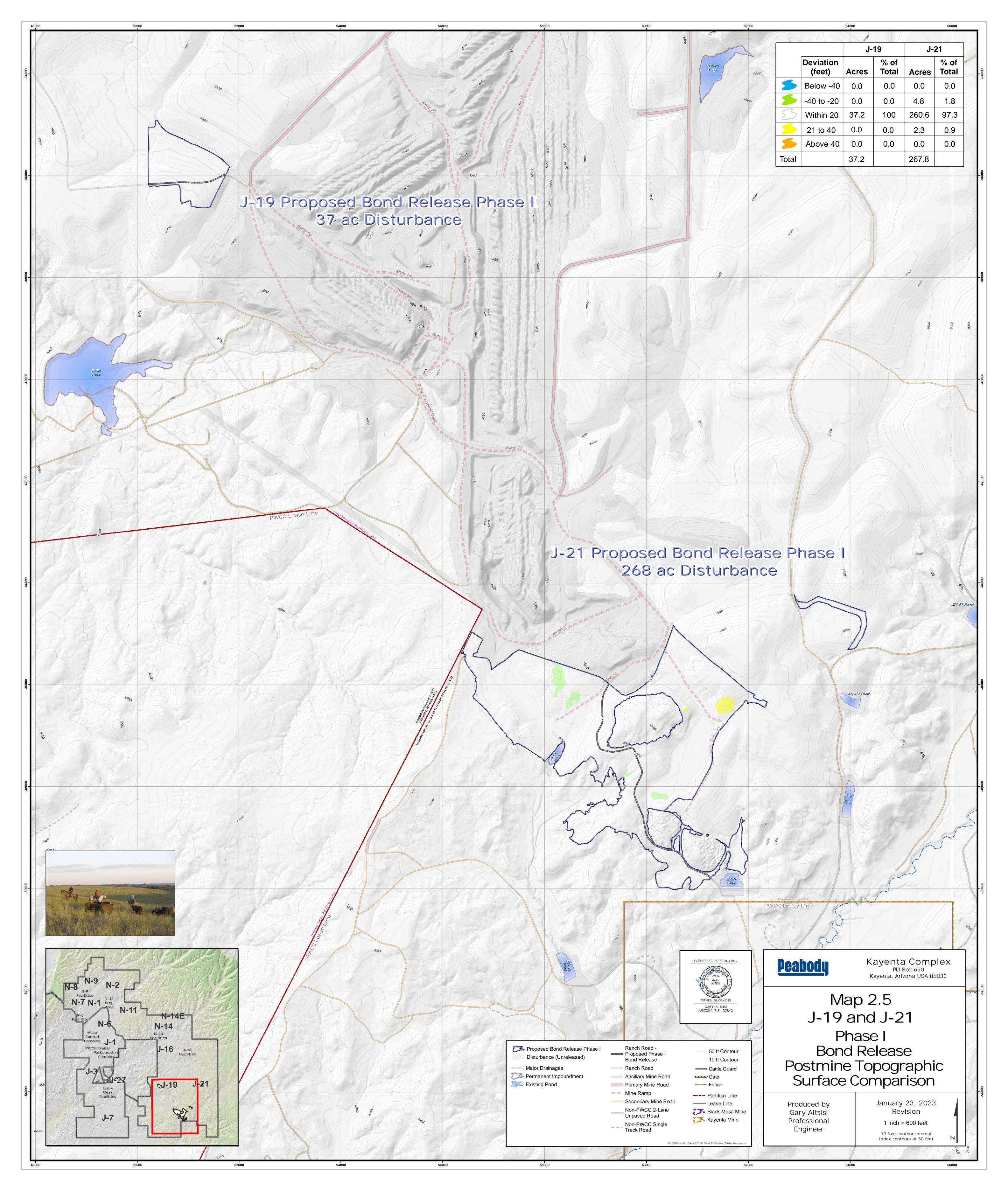
Billings, MT 800.735.4489 · Casper, WY 888.235.0515 · Gillette, WY 866.686.7175 · Helena, MT 877.472.0711

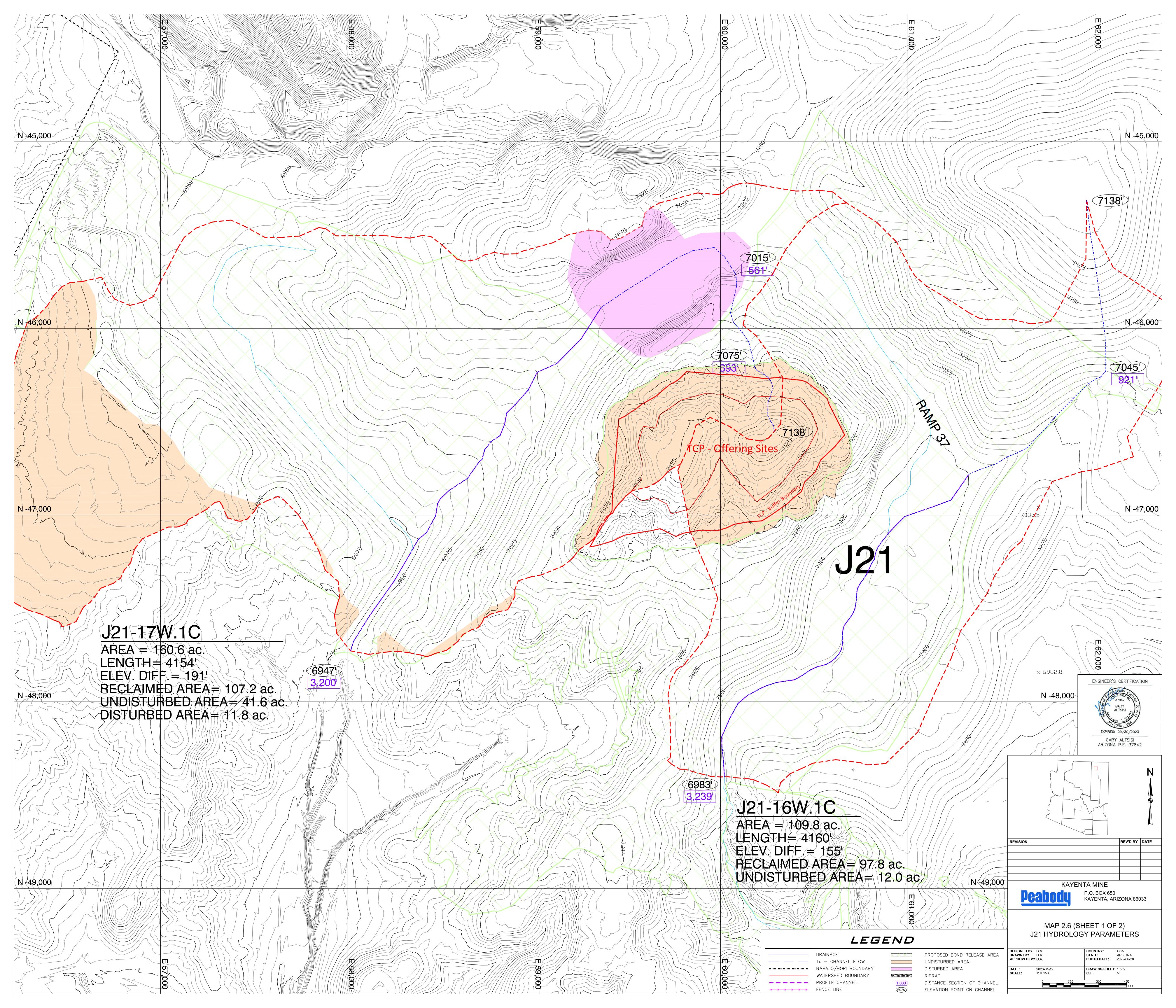

Peabody Western Coal Co. Kayenta Mine

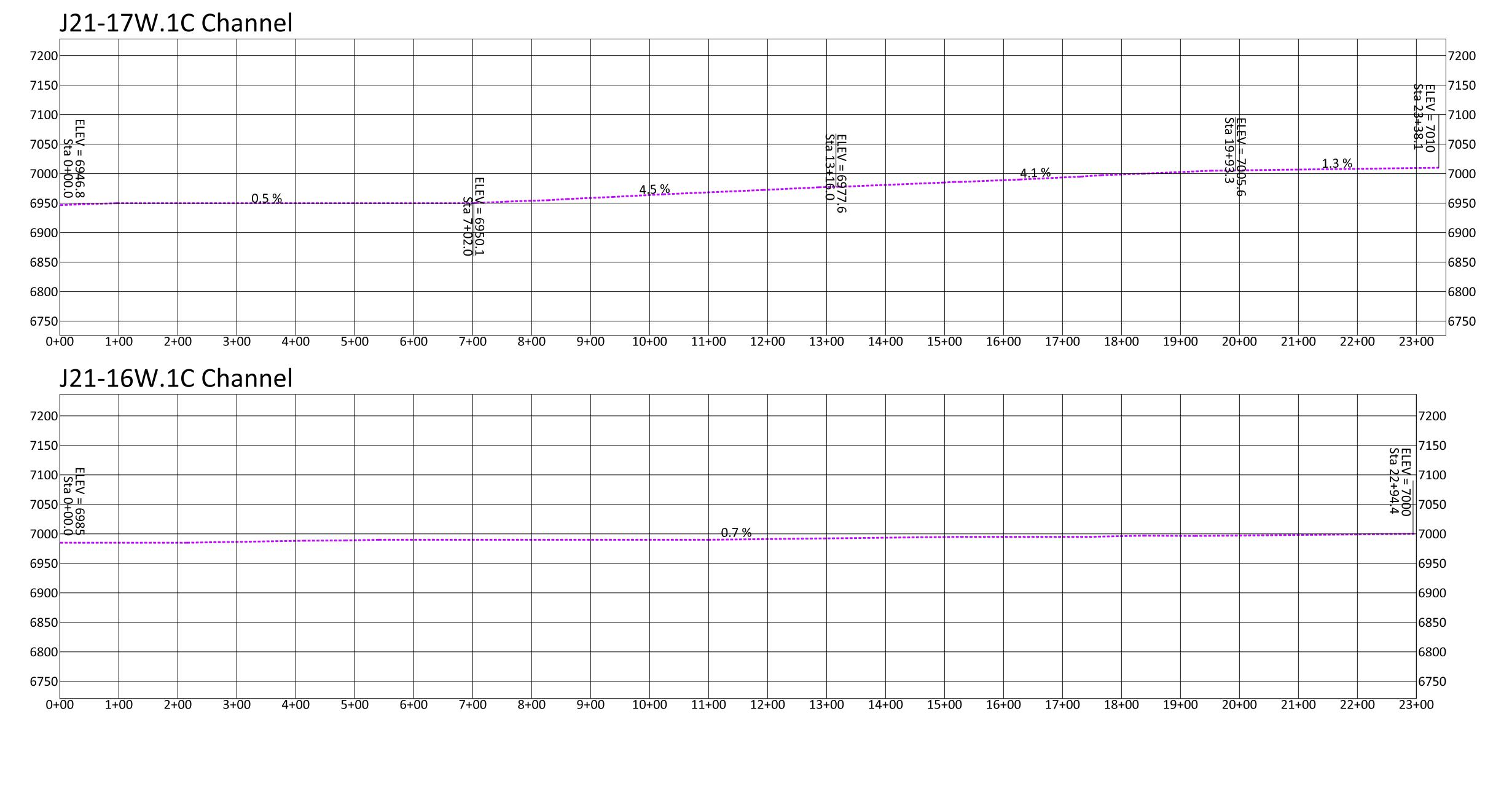

Client:

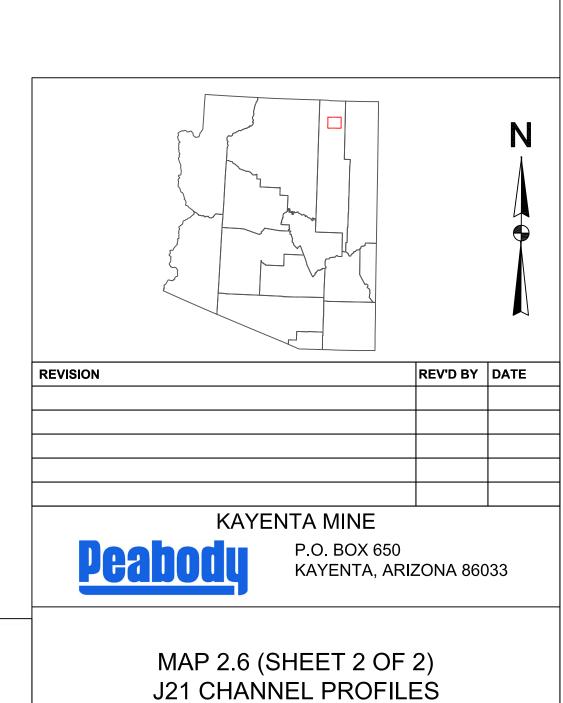

Revised Date: 01/04/23

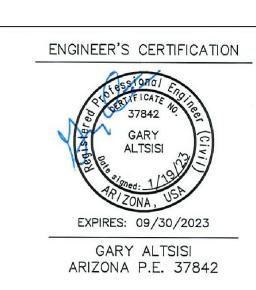

Report Date: 12/31/22 Date Received: 12/09/22


Clens	reacous vesterii coai co. Nayeria iviiile	מון כסמו כסי	Ayella mile			-	Report Date: 12/31/22	771177
Project: Workorder:	J21 Spoils H22120265					Dai	Date Received: 12/09/22	2/09/22
		Analysis	Neut Potential	Acid Potential	Acid/Base Potential	Sulfur, Total		
		Units	rkt	tkt	tkt	%		
Sample ID	Cilent Sample ID	Up Low	w Results	Results	Results	Results		
H22120265-001	3682 A	0	18	6.6	12	0.21		
H22120265-002	3682 A	1	24	6.5	18	0.21		
H22120265-003	3682 B	0	19	6.7	12	0.22		
H22120265-004	3682 B	د	24	3.0	21	0.09		
H22120265-005	3682 C	0	16	5.8	9	0.19		
H22120265-006	3682 C	د د	15	12	ო	0.39		
H22120265-007	3682 D	0	22	6.2	16	0.20		
H22120265-008	3682 D	<u>1</u> س	23	8.4	48	0.15		
H22120265-009	3680 A	0	19	6.0	<u>6</u>	0.19		
H22120265-010	3680 A	1 3	19	7.2	4	0.23		
H22120265-011	3680 B	0	19	9.1	0	0.29		
H22120265-012	3680 B	<u>-</u>	37	5,5	32	0.18		
N H22120265-013	3680 C	0	35	5.8	29	0.19		
N H22120265-014	3680 C	د	27	5.8	21	0.18		
(C) H22120265-015	3680 D	0	18	6.0	12	0.19		
H22120265-016	3680 D	1 3	14	6.7	ω	0.22		
H22120265-017	3698 A	0	17	8.2	Ø	0.26		
H22120265-018	3696 A	1 3	18	4.5	13	0.14		
H22120265-019	3696 B	0	26	5.8	19	0.19		
H22120265-020	3696 B	1 3	34	6.4	24	0.21		
H22120265-021	3696 C	0	14	13	-	0.42		
H22120265-022	3696 C	1 ع	15	13	0	0.40		
H22120265-023	3696 D	0	17	7.7	Ø	0.25		
H22120265-024	3696 D	4	19	6.8	4	0.22		
H22120265-025	3760 A	0	17	4.2	13	0.13		
H22120265-026	3760 A	٦ 9	15	5.0	10	0.16		
H22120265-027	3760 B	0	5	3.2	9	0.10		
H22120265-028	3760 B	1 ع	14	2.8	12	0.09		









DESIGNED BY: G.A
DRAWN BY: G.A.
APPROVED BY: G.A.

DATE: 2023-01-19
SCALE: 1" = 100'

DRAWING/SHEET: 2 of 2
C.I.: 5'

0 100 200 300
FEET