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1.0 Objective

In the AMDTreat program, pumping is considered an ancillary treatment component of a mine drainage
treatment facility. The construction of boreholes and installation of pumps and pipelines allow for the
movement of influent water to the treatment site. Therefore, the AMDTreat program included this
module to allow the user to capture the costs associated with constructing influent pumps, pump
boreholes, control systems and conveyance pipelines, including pipeline appurtenances, as part of a mine
drainage treatment facility.

The objectives of the overview are to (1) Provide an understanding of the application of pumping in mine
drainage treatment facilities and (2) Provide an overview of the Pumping Module including guidance to
users in developing a cost estimate to construct this treatment system component. This module, as well as
most of the other AMDTreat modules, can also be applied to reverse cost model existing systems and
system components to establish and evaluate future financial and investment decisions. The information
is presented in two sections, Overview and Application and Pumping Module Overview.

2.0 Overview and Application

A basic understanding of the application and equipment requirements for both influent pump systems and
conveyance pipelines are required to develop an accurate cost estimate using the AMDTreat software.
These topics are discussed below before discussing the Pumping Module interface and functionality to
provide the necessary context. The Overview and Application section is organized into two parts: (1)
Functions and (2) Configuration & Application.

2.1 Functions
The following is a list of the potential functions of pumping on a mine/treatment site:

1. Control mine pool elevation(s).

2. Convey water to the treatment site.

3. Transfer or convey water between mine pools or discharge outfalls in order to control and or
treat multiple mine drainage sources at a common location.

2.2 Configuration & Application

Engineering principles and manufacturer recommendations should be employed when considering the use
of pumping as part of a treatment system. Pumps should be designed and constructed in order to convey
mine water considering the following items in addition to the necessary flow rate:

Number of pumps/wells.

Size of well/borehole.

Drilling depth to mine pool.

Total dynamic head (TDH) pressure.
Pumping time (daily and annual).
Estimated pump efficiency.

Pipe fluid velocity.
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It is highly recommended to work closely with a design engineer or pump manufacturer representative to
ensure the most appropriate pump type, type of materials used in pump construction, and size is used for
the application. Drawing or design software (e.g., AutoCAD) may be beneficial in terms of obtaining the
various dimensions of a pumping system then using this information in AMDTreat to obtain the costing
information.

The application of pumping systems at mine drainage treatment facilities will depend on the intended
purpose. Most pumping applications in mine drainage treatment systems involve conveying water from
an underground mine pool to the surface for treatment. Pumping allows the user to direct the mine water
to an appropriate site with enough available land area for the necessary treatment system, most often an
active chemical treatment facility but not exclusive of possible passive treatment alternatives as well.
Pumping systems can also control mine pool elevations to prevent uncontrolled surface discharge of mine
water. These are just a few examples for the application of pumping specifically for mine drainage
treatment or mine pool control purposes. The AMDTreat program can be utilized to conceptually size
these facilities as part of the treatment system and estimate the costs associated with them.

It should be noted that in the current version of AMDTreat the Pumping Module is designed to model one
specific type of pump, a Vertical Turbine Lineshaft Pump (VTLP). These pumps have a drive motor on
the surface connected by a drive shaft assembly to a turbine pump bowl assembly located downhole at the
desired pumping depth (see Figures 1 and 2). In the experience of the AMDTreat team, VTLP pumps are
the most common and most efficient type of high-capacity influent pumps used at mine drainage
treatment facilities but other pump types do exist, such as submersible turbine pumps, and are employed
at mine drainage treatment facilities. This underscores the aforementioned statement regarding
consultation with design engineers and pump manufacturing experts when making conceptual and design
choices. The following weblink will also assist the user by describing various types of high-capacity
pumps:

Submersible vs. Lineshaft Vertical Turbine Pumps: Advantages and Limitations | WaterWorld

3.0 Pumping Module Overview

This section focuses on describing the specifics of the AMDTreat Pumping Module.

3.1 Layout and Workflow

In general, inputs are on the left-hand side of the module and calculated outputs are on the right. The
module inputs on the left-hand side are generally arranged into three sections: (1) Vertical Turbine Pump
Borehole, (2) Conveyance Pipeline, and (3) Vertical Turbine Pumps. The workflow for users is to begin
at the top left-hand side and continue down on the left-hand side entering all the appropriate input
parameters.

Module output is provided on the right-hand side of the module. Module outputs are arranged into four
sections: (1) Sizing Summary, (2) Capital Cost, (3) Annual Cost, and (4) Net Present Value. The Sizing
Summary section provides the Pipe Inside Diameter, Pipe Dynamic Losses, Total Dynamic Head, Pipe
Total Dynamic Head Pressure, Pipe Pressure Class (SDR#), Pipe Fluid Velocity, Pump Flow Rate, Pump
Shaft Horsepower, and Gravel Pipe Bedding Weight. The estimated cost to construct and maintain the


https://www.waterworld.com/technologies/pumps/article/16191770/submersible-vs-lineshaft-vertical-turbine-pumps-advantages-and-limitations

pump, it’s ancillary components and the Conveyance Pipeline including electric cost is provided under
the Capital Cost and Annual Cost headings. The final output section includes the Net Present Value
(NPV) analysis. This section provides an estimate of the total cost to operate and maintain a Pumping
system component for a defined time period.

A general overview of the module input and output sections is presented below, however, users are
directed to the numerous tool tips located in the module that provide additional detailed information, such
as definitions of terminology. In most cases, the tool tips are accessed by clicking on the information icon

(ﬂ'

) in each of the subheadings in the module.

3.2 Module Inputs

3.2.1 Vertical Turbine Pump Borehole: This section allows the user to select the Number of Wells
and the borehole sizing and define the costs associated with the process.

3.2.1.1 Number of Wells - This user input allows the selection of the Number of Wells to be bored
to the mine pool.

3.2.1.2 Inside Diameter - This user input allows the choice between 16, 24, 30, and 36-inch Inside
Diameter boreholes for the drilling and casing installation cost ($/1t).

3.2.1.3 Borehole Sizing Multiplier - This user input allows the user to apply a multiplier to the
borehole sizing to accommodate the drilling and well installation process.

3.2.1.4 Drilling Depth to Mine Pool - This user input represents the vertical depth, in feet,
required to reach the mine pool from the surface.

The user should note that the Vertical Turbine Pump Borehole portion of the module only provides
cost calculations based upon user selected values for Number of Wells, selected Inside Diameter and
Drilling Depth to Mine Pool. Pump sizing is determined by selections made in the Conveyance
Pipeline section below (primarily Flow Rate and Total Static Head). Consequently, once the
horsepower (HP) rating has been calculated, the user should then consult with pump manufacturers or
equivalent pump system experts to verify that the appropriately sized borehole has been selected and
matched to the appropriate size pump.

3.2.2 Conveyance Pipeline (HDPE): This section contains selection options for pipeline (see
Figure 3), appurtenances, and installation, as well as the Total Static Head, percentage of Incidental
Head Losses and desired Flow Rate. As noted in the previous section, some of these values are also
used by the AMDTreat program to calculate the required vertical turbine pump horsepower. The
default values are based on prior experience of the AMDTreat team; however, these values can and
should be adjusted according to the specific site conditions.

3.2.2.1 Flow Rate - The projected Flow Rate of mine water to be pumped. Note that if the user is
envisioning the use of multiple pumps, the Flow Rate entered by the user should be divided by
the number of pumps that are planned to be used. The AMDTreat program does not automatically
do this based upon the number of wells selected in the Vertical Turbine Pump Borehole section of
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the Module (section 3.2.1 above). If multiple pumps are envisioned for the project, especially if
they will be using separate conveyance pipelines, the user may opt to model the site by evaluating
each pump system in separate AMDTreat Pumping Modules. The Help File for the Main User
Interface (MUI) contains additional information for opening multiple modules.

3.2.2.2 Nominal Pipe Outside Diameter - The user is provided a dropdown menu with the pipe
sizes of 8, 10, 12, 16 and 18-inch outside diameter options to choose from.

3.2.2.3 Estimated Iron Pipe Size (IPS) Standard Diameter Ratio (SDR) - The user is provided a
dropdown menu with the Standard Diameter Ratio (SDR) values 7,9, 11, 13.5 and 17. IPS is an
older pipe sizing system based on the inside diameter of the pipe. SDR is a method of rating the
durability of a pipe against pressure and it describes the correlation between the pipe diameter
and the pipe wall thickness. Pipes with a lower SDR number can withstand higher pressures than
the same diameter pipe having a higher SDR number. The AMDTreat program will guide the user
in selecting the appropriate SDR rating for the pipe diameter selected and the operational
conditions selected (head, flow rate, length of pipeline). The program will issue an error message
if the SDR value selected by the user has an insufficient pressure rating. The program will also
notify the user in the case where the SDR value selected results in a pipe selection having a
pressure rating that significantly exceeds the expected operational pressures and where one or
more higher SDR number pipes could be used to lower the estimated cost.

3.2.2.4 Total Static Head - This input allows the user to enter the Total Static Head pressure
expected for the pumping system. Total Static Head is the difference in elevation between the
liquid levels of the suction (intake), or the lowest achievable elevation of pumping in cases where
the selected pump requires a given water level be maintained above the pump intake, and
discharge of the pumping system.

3.2.2.5 Pipe Laying Length - This input allows users to set the total pipe length from the borehole
to the discharge location for the pumping system.

3.2.2.6 Incidental Head Losses - This input represents the reduction in total head or pressure as a
percent that results from fluid flowing through a piping system. The head loss that occurs in
piping systems is based on the fluid velocity, pipe diameter and length, friction factor for the pipe
roughness, and the Reynolds number representative of the flow. Bends/elbows, valves and other
pipe fittings also play a role in the head losses experienced in a piping system. The default value
provided can be changed by the user to more accurately reflect site specific conditions.

3.2.2.7 Pipe Bedding Thickness - This input represents the thickness of the gravel bed placed
under the entire length of conveyance piping in order to provide support for the bottom portion of
the pipe from the borehole to the discharge point.

3.2.2.8 Gravel Pipe Bedding Unit Cost - This input represents the unit cost per ton of gravel used
for the pipe bedding installed under the conveyance piping.

3.2.2.9 Excavation Unit Cost - This input represents the excavation unit cost in dollars for the
pipe trenching.

3.2.2.10 Backfill and Compaction Unit Cost - This input is the cost associated with backfill and
compaction of the buried conveyance pipeline and is represented in dollars per cubic yard.



3.2.2.11 Air/Vacuum Release Assemblies - This input is an optional but recommended item
associated with the conveyance pipeline that is installed at the high point(s) in the pipeline where
air pockets accumulate and the air release valve allows the air to be released from the pipeline
allowing for increased efficiency of the pipeline and pump and also provides protection from
hydraulic shock (water hammer effect). The vacuum release value component of the assembly
allows air to enter the pipeline when the pressure in the pipeline is less than the atmosphere and
prevents collapse of the pipeline. The input for this item allows the user to specify the quantity
and the cost per unit.

3.2.3 Vertical Turbine Pumps: This section allows the user to provide specific information related
to a proposed or existing Vertical Turbine Pump, which are commonly used to pump water from an
underground mine pool to the surface for treatment. This specific information includes the Number of
Pumps, Pump Efficiency, Pump Sizing Safety Factor, Concrete and Electrical Unit Costs, operational
times, Pump and Pipeline Maintenance Factors, and if a Soft Start/Variable Frequency Drive (VFD)
is desired are all used to estimate the pump size, Capital Cost, and Annual Costs.

3.2.3.1 Number of Pumps - This input allows the user to select the number of vertical turbine
pumps for the project. As mentioned above, the AMDTreat pumping module does not divide the
user selected flow rate entered in the Conveyance Pipeline section (Section 3.2.2.1) by the
Number of Pumps the user selects in this section. Consequently, in certain modeling and costing
scenarios, the user may opt to model the site by evaluating each pump system in a separate
AMDTreat Pumping Module. The Help File for the MUI contains additional information for
opening and working multiple modules.

3.2.3.2 Estimated Pump Efficiency - This input allows the user to specify the efficiency of a pump
if it is known based on the manufacturer’s information. The overall efficiency of a centrifugal
pump (a Vertical Turbine Pump is a type of centrifugal pump) is the ratio of the water (output)
power to the shaft (input) power. Most medium and large sized centrifugal pumps have
efficiencies ranging from 75 to 93%.

3.2.3.3 Pump Sizing Safety Factor - This input allows the user to add a safety factor in
determining the appropriate size of the pump for the specific application. Therefore, if the
calculations for sizing a pump determine that the pump shaft horsepower should be 20 HP and the
user specifies a sizing safety factor of 0.20, the resulting pump shaft horsepower will be 20 x 1.2
= 24 HP as an example.

3.2.3.4 Concrete Unit Cost - This input allows the user to adjust the unit cost of concrete based on
dollars per cubic yard ($/yd?).

3.2.3.5 Electrical Unit Cost - This input allows the user to enter their current electricity rate in
dollars per Kilowatt-hour ($/kWh).

3.2.3.6 Daily Pumping Time - This input allows the user to adjust the operational time by
specifying the number of hours per day (hrs/day) that the pumps are operated to estimate the
annual costs of the pumping system.

3.2.3.7 Annual Pumping Time - This input allows the user to adjust the operational time by
specifying the number of days per year (days/yr) that the pumps are operated to estimate the
annual costs of the pumping system.



3.2.3.8 Pipeline Maintenance Factor - This input allows the user to incorporate a maintenance
factor that is calculated by multiplying the user specified factor by the capital cost of the
conveyance pipeline, which provides an annual cost for maintaining the pipeline system.

3.2.3.9 Pump Maintenance Factor - This input allows the user to incorporate a maintenance
factor that is calculated by multiplying the user specified factor by the capital cost of the pump(s),
which provides an annual cost for maintaining the pump system.

3.2.3.10 Soft Start/VFD - This input is an optional item the user can choose to include in the
pump design referred to as a Soft Start/Variable Frequency Drive (VFD) system. The Soft
Start/VFD are installed on the motor of the pump and the VFD allows the user to control or adjust
the flow rate of the pump, while the soft start component is beneficial when there is an emergency
backup generator system needed as it can reduce the size of the generator needed due to the very
high starting torque on vertical turbine pumps. Figure 4 is a photo of a Soft Start/VFD system for
a mine water pumping system. If the user keeps the box checked the cost of a Soft Start/VFD
system is included in the Capital Cost for the pumping system. Additionally, VFD’s can
significantly reduce system operational costs as they can allow for much more precise mine pool
operational control. For example, during low flow seasonal conditions pumping rates can often be
reduced thus reducing electrical costs, treatment chemical utilization, sludge generation and over
pumping (excessively lowering) of the mine pool. In many instances mine pools that are held
within a narrow range of operating levels show significant improvement in raw water quality over
time as compared to similar pools where flooded elevation can fluctuate significantly. Lastly, the
decision to include Soft Start/VFD systems may depend upon the utility company providing
electrical service. In many cases for new applications, due to electrical load utility companies
may or will require these systems on all motors above a given HP rating. Contacting the utility
provider in advance of project design is recommended.

3.3 Module Outputs

3.3.1 Sizing Summary: The Sizing Summary section displays important calculated module outputs,
such as estimates of pipe inside diameter, pipe dynamic losses, total dynamic head, pipe total
dynamic head pressure, pipe pressure class (SDR#), pipe fluid velocity, pump flow rate, pump shaft
horsepower, and the weight of bedding gravel needed for the Conveyance Pipeline.

3.3.2 Capital Cost: This section provides the estimated Capital Costs for the various components of
the pumping system and the total estimated Capital Cost to install the pumping component of a
treatment system.

3.3.3 Annual Cost: The Annual Cost section provides an estimate of the Annual Cost to operate and
maintain the pumping component of the treatment system. Three specific items make up the Annual
Costs of the pumping system including Electrical, Pump Maintenance, and Pipeline Maintenance.
Each are shown under the Annual Cost section to calculate the total Annual Cost.

3.3.4 Net Present Value: The NPV section determines the cost to operate a treatment system
component over a specified time period. The NPV calculates the present-day financial investment
required to generate the income to pay for future operation and equipment/materials replacement
costs. Both Financial Variables and Cost Categories are required to calculate the NPV.



3.3.4.1 Financial Variables - The Term of Analysis, Inflation Rate, and Rate of Return are three
variables used in the NPV calculations. The default values for these terms are shown under the
Net Present Value section of each module. Users must access the Net Present Value menu at the
top of the MUI to change the default values as they would apply to all modules used for an entire
treatment system. While NPV is determined for each AMDTreat module activated by the user,
the goal is to determine a total NPV for an entire mine drainage treatment system project (a
collection of cost estimates for individual modules creates a treatment system project in
AMDTreat). Therefore, a single value for Term of Analysis, Rate of Return, and Inflation Rate is
applied to all modules and cannot vary between modules.

e Term of Analysis: The time period used by the NPV calculation to determine the
financial investment required to pay for all future costs of the treatment system.

o Inflation Rate: Represents the average price increase of goods and services over
time. AMDTreat uses the inflation rate to calculate the future cost of the annual
operation and maintenance (O&M) and recapitalization items.

e Rate of Return: Describes the expected profit on an investment.

3.3.4.2 Cost Categories - For each treatment module, AMDTreat provides a list of
recommended equipment and materials that require recapitalization. In addition,
AMDTreat provides recommendations (default values) for Life Cycle and Replacement
Percentage. Users can click on the default values for Life Cycle or Replacement
Percentage and use the +/- buttons to change the default values. In addition, users can
select Custom Cost and enter a new cost to represent the current cost of the equipment.
Users can add new recapitalization items or deactivate/delete existing items for
calculating the NPV.

An example of how the recapitalization variables are used to determine NPV is to
consider the following hypothetical scenario. Assume a vertical turbine pump has a Life
Cycle of 50 years but requires the pump motor to be rebuilt every 20 years. Assume the
present-day cost to purchase the motor is $500,000, and the cost to remove, rebuild, and
reinstall the pump motor is $20,000. Now assume we want to determine the amount of
investment required today (NPV) to generate the income to pay for the future cost of
rebuilding the pump motor over a 50-year Term of Analysis, which is also equal to the
Life Cycle of the pump. Assume an Inflation Rate of 5.0% and Rate of Return of 8.1%.
The goal is to place the money in a relatively secure investment vehicle to generate 8.1%
annually. The NPV will calculate the size of investment required to generate income for
future costs.

There are several ways to model the replacement cost. One way is to replace 4% of the
present-day cost of the pump (4% of $500,000 = $20,000) with a Life Cycle of every 20
years. If the Term of Analysis is 50 years, then the entire pump would not require
recapitalization since the Life Cycle of the pump is 50 years. However, the motor would
require two replacements (50 years / 20 years = 2.5 rounded down to 2).

To determine the NPV to recapitalize rebuilding of the motor, AMDTreat calculates the
future cost to rebuild the motor at each Life Cycle, 20 and 40 years. The program uses the
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Inflation Rate to inflate the present-day default cost to rebuild the motor in 20 and 40
years from now. While the present-day cost to rebuild the pump motor is $20,000, the
future cost to rebuild the motor in 20 years at a 5.0% Inflation Rate is $53,065 and
$140,799 in 40 years (Equation 1). Assuming an 8.1% Rate of Return, the 50-year NPV
for the pump is $17,422. In other words, an initial investment of $17,422 is needed at an
annual Rate of Return of 8.1% to generate the investment income required for the two
motor rebuilds over the 50-year Life Cycle of the pump.

Cost to rebuild pump motor in 20 years =

Present Day Cost X (100% + Inflation Rate)*® = $20,000 x (100% + 5%)2° = $53,065 (1)

Annual Operation and Maintenance Cost: By default, AMDTreat transcribes the annual
O&M cost from the Annual Cost section to the NPV section. The program assumes the
module is being used to estimate the Annual Cost for a treatment system component, so it
automatically transcribes the Annual Cost to the NPV section. If this is not the case or the
user wants to use some other Annual Cost, the “Use Custom” box can be selected to
allow the user input of a different Annual Cost to utilize in the NPV calculation.

Recapitalization Cost: Certain treatment system components, especially mechanical and
water conveyance equipment, require periodic replacement. The recapitalization cost of
an item is an estimate of the amount of money required to pay for future replacement
costs for the item. In addition to the Financial Variables described above, three additional
values are required to calculate the NPV of recapitalization costs, the Present-Day
Equipment Cost, the Life Cycle, and the Replacement Percentage.

Default Cost: This represents the current cost to purchase the equipment or material.

Life Cycle: The time frame between equipment or material replacement is termed as its
Life Cycle. Some equipment manufacturers provide recommended Life Cycles for their
equipment to provide consumers with an estimate of how long the equipment is expected
to be operational. Some Life Cycles, such as those used for treatment media (limestone),
are based on best professional judgement. Some operators prefer to periodically purchase
and replace equipment before failure to preserve the continuity of operations, while
others wait until failure to replace an item.

Replacement Percentage: The Replacement Percentage is an adjustment factor to the
Default Cost to accommodate situations where the entire piece of equipment or all the
material does not require recapitalization. For example, a passive treatment component
may be designed to contain enough limestone to neutralize the acidity load for 20 years,
however, the accumulation of metal hydroxide precipitates within the void space of the
limestone layer may require that 25% of the limestone be replaced every seven years to
prevent hydraulic failure such as plugging or short-circuiting. For this scenario, the
initial cost of the limestone making up the limestone layer is discounted by 75% and
assigned a Life Cycle of seven years to determine the amount of money required to cover
the cost of replacing 25% of the limestone layer every seven years over the Term of
Analysis.
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3.3.4.3 Rationale for Recapitalization Recommendations - Recapitalization
recommendations are based on professional experience of the AMDTreat Team and may
not apply to all situations. Users are encouraged to customize the recapitalization
assumptions to their treatment scenario. AMDTeat Team members are located in
Pennsylvania and West Virginia and have collective experience in design, funding,
and/or operation/maintenance for over 100 passive treatment systems. Users may have
different experience and opinions than those listed.

By default, AMDTreat includes a list of five recapitalization items for typical
underground mine pool pumping systems. Users can delete or modify any of the default
recapitalization items by either deselecting the item or by setting the Replacement
Percentage to zero. If the item is deselected the total cost for the item will still be shown
but the cost will be subtracted from the NPV, shown in the NPV Heading. For example,
the default value for the Life Cycle of a Pump is 10 years due to wear and tear of
consistent use. However, users may opt to decrease the Life Cycle and Replacement
Percentage to match the cost of rebuilding the motor periodically (i.e. every seven years)
rather than replacing the entire pump. Users are free to fully customize the replacement
items, including adding new items or deleting default items.

Borehole: The default Life Cycle for borehole is set at 75 years and the default
Replacement Percentage is one hundred percent (100%). The user can adjust these
default values as appropriate or input a Custom Cost if known such as for an existing
system.

Pipeline: The default Life Cycle for the pipeline component is set at 75 years and the
default Replacement Percentage is one hundred percent (100%). The user can adjust
these default values as appropriate or input a Custom Cost if known such as for an
existing system.

Control/SCADA: The default Life Cycle for the control/SCADA system for the pumping
equipment is set at 10 years and the default Replacement Percentage is one hundred
percent (100%). The user can adjust these default values as appropriate or input a
Custom Cost if known such as for an existing system.

Pump: The default Life Cycle of the pump itself is set at 10 years and the default
Replacement Percentage is one hundred percent (100%). This represents a complete
replacement of the pump, but it is common and less expensive for operators to rebuild the
motor component of the pump every so many years and as a result the cost of rebuilding
the motor could be determined, divided by the cost of the entire pump and that percentage
used as the Replacement Percentage at the desired frequency the motor needs rebuilt
(e.g., seven years).

VFD: The default Life Cycle of the VFD component of the pumping system is 10 years
and the default Replacement Percentage is one hundred percent (100%). The user can
adjust these default values as appropriate or input a Custom Cost if known such as for an
existing system.
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3.4 Assumptions of Design Sizing and Costs

AMDTreat is a cost estimation model that uses assumptions to provide treatment sizing and both capital
and annual cost estimates. While there are many assumptions in the program, the assumptions that follow
are important for the Pumping Module.

1.

It should be noted that the in the current version of AMDTreat the Pumping Module is designed
to model one specific type of pump, a VTLP. These pumps have a drive motor on the surface
connected by a drive shaft assembly to a turbine pump bowl assembly located downhole at the
desired pumping depth. In the experience of the AMDTreat team, VTLP pumps are the most
common and most efficient type of high-capacity influent pumps used at mine drainage treatment
facilities but other pumps types do exist, such as submersible turbine pumps, and are employed at
mine drainage treatment facilities. This underscores the aforementioned statements regarding
consultation with design engineers and pump manufacturing experts when making conceptual and
design choices.

Note that if the user is envisioning the use of multiple pumps, the Flow Rate entered by the user
should be divided by the Number of Pumps that are planned to be used. In addition, also note that
the AMDTreat program does not automatically do this based upon the number of wells selected
in the Vertical Turbine Pump Borehole section of the Module (section 3.2.1). If multiple pumps
are envisioned for the project, especially if they will be using separate Conveyance Pipelines, the
user may opt to model the site by evaluating each pump system in a separate AMDTreat Pumping
Module. The Help File for the MUI contains additional information for opening and working
multiple modules.

The user should note that the Vertical Turbine Pump Borehole portion of the module only
provides cost calculations based upon user selected values for Number of Wells, selected Inside
Diameter and Drilling Depth to Mine Pool. Pump sizing is determined by selections made in the
Conveyance Pipeline section (primarily Flow Rate and Total Static Head). Consequently, once
the HP rating has been calculated, the user should then consult with pump manufacturers or
equivalent pump systems experts to verify that the appropriately sized borehole has been selected
and matched to the appropriate size pump.

4.0 References

WaterWorld online reference publication Home | WaterWorld

Groundwater and Wells 3™ edition, 2007, Johnson Screens div Weatherford Corp, 812 pp
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5.0 Figures

Figure 1. Vertical Turbine Pump at a mine site in West Virginia used to
pump water from an underground mine pool to the surface for treatment
at an active chemical treatment facility.
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Figure 2. Vertical Turbine Pump housed in an enclosure for noise
suppression and to reduce weathering at a mine site in Pennsylvania
used to pump water from an underground mine pool to the surface for
treatment at an active chemical treatment facility.
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Figure 3. New installation for a Vertical Turbine Pump showing
concrete pad, surface borehole casing, inner borehole casing and
conveyance piping connection fittings at a mine site in Pennsylvania
used to pump water from an underground mine pool to the surface for
treatment at an active chemical treatment facility.
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Figure 4. Soft Start/VFD units (2) for two 150 HP submersible mine
water withdraw pumps at a mine site in Pennsylvania used to pump
water from an underground mine pool to the surface for treatment at an
active chemical treatment facility.
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Figure 5. Concrete pad showing conveyance pipeline connection,
electrical service and monitoring and telemetric equipment for a
submersible turbine pump at a mine site in Pennsylvania used to pump
water from an underground mine pool to the surface for treatment at an
active chemical treatment facility.
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